论文标题

球形$ s $ distance $ t $ designs的内部产品的合理性,用于$ t \ geq 2S-2 $,$ s \ geq 3 $

Rationality of the inner products of spherical $s$-distance $t$-designs for $t \geq 2s-2$, $s \geq 3$

论文作者

Boyvalenkov, Peter, Nozaki, Hiroshi, Safaei, Navid

论文摘要

我们证明,带有$ t \ geq 2S-2 $(delsarte代码)和$ s \ geq 3 $的球形$ s $ distance $ t $ t $ designs的内部产品是合理的,唯一的例外是iCosahedron。在其他配方中,我们证明所有尖锐的构型都具有合理的内部产品,并且所有获得Levenshtein结合的球形代码都具有合理的内部产品,除了二十面体外。

We prove that the inner products of spherical $s$-distance $t$-designs with $t \geq 2s-2$ (Delsarte codes) and $s \geq 3$ are rational with the only exception being the icosahedron. In other formulations, we prove that all sharp configurations have rational inner products and all spherical codes which attain the Levenshtein bound, have rational inner products, except for the icosahedron.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源