论文标题
GrowliFlower:用于花椰菜生长分析的图像时间序列数据集
GrowliFlower: An image time series dataset for GROWth analysis of cauLIFLOWER
论文作者
论文摘要
本文介绍了Growliflower,这是一个基于图像的无人机时间系列数据集的两个受监视的花椰菜场,大小为0.39和0.60公顷,并在2020年和2021年获得了0.60公顷。该数据集包含RGB和多光谱正photosos,从其中提供了大约14,000个单独的植物坐标。坐标使数据集用户可以提取显示单个植物的完整和不完整的图像补丁的时间序列。该数据集包含740种植物的表型性状,包括发育阶段以及植物和花椰菜大小。由于可收获的产物完全被叶子覆盖,因此提供了植物ID和坐标来提取植物前后植物的图像对,以促进花椰菜头大小的估计。此外,数据集包含像素精确的叶子和植物实例分割,以及词干注释,以解决分类,检测,分割,实例分割和类似的计算机视觉任务等任务。该数据集旨在促进机器学习方法的开发和评估。它特别着眼于分析花椰菜的生长和发展以及表型特征的推导,以促进农业自动化的发展。提出了基于标记的实例分割数据在植物和叶片水平下实例分割的两个基线结果。整个数据集可公开使用。
This article presents GrowliFlower, a georeferenced, image-based UAV time series dataset of two monitored cauliflower fields of size 0.39 and 0.60 ha acquired in 2020 and 2021. The dataset contains RGB and multispectral orthophotos from which about 14,000 individual plant coordinates are derived and provided. The coordinates enable the dataset users the extraction of complete and incomplete time series of image patches showing individual plants. The dataset contains collected phenotypic traits of 740 plants, including the developmental stage as well as plant and cauliflower size. As the harvestable product is completely covered by leaves, plant IDs and coordinates are provided to extract image pairs of plants pre and post defoliation, to facilitate estimations of cauliflower head size. Moreover, the dataset contains pixel-accurate leaf and plant instance segmentations, as well as stem annotations to address tasks like classification, detection, segmentation, instance segmentation, and similar computer vision tasks. The dataset aims to foster the development and evaluation of machine learning approaches. It specifically focuses on the analysis of growth and development of cauliflower and the derivation of phenotypic traits to foster the development of automation in agriculture. Two baseline results of instance segmentation at plant and leaf level based on the labeled instance segmentation data are presented. The entire data set is publicly available.