论文标题
异国情调的循环共同体课程和Lipschitz代数
Exotic cyclic cohomology classes and Lipschitz algebras
论文作者
论文摘要
我们研究了Lipschitz连续和Hölder连续函数的代数的非交通性几何形状,其中出现了非古典和新颖的差异几何不变剂。的确,我们引入了新的Hochschild和循环共同体类别类别,这些类别与较高的代数$ K $ - 理论搭配,但仅限于平稳函数的代数时就消失了。所说的同种学课提供了其他方法,可以从$ k $ - 理论中提取康纳斯·卡鲁比的相对顺序中提取数值不变性。
We study the noncommutative geometry of algebras of Lipschitz continuous and Hölder continuous functions where non-classical and novel differential geometric invariants arise. Indeed, we introduce a new class of Hochschild and cyclic cohomology classes that pair non-trivially with higher algebraic $K$-theory yet vanish when restricted to the algebra of smooth functions. Said cohomology classes provide additional methods to extract numerical invariants from Connes-Karoubi's relative sequence in $K$-theory.