论文标题
$α$ -Strichartz的极端不平等
Extremals for $α$-Strichartz inequalities
论文作者
论文摘要
一维$α$ -strichartz的不等式的极端序列的预熟度的必要条件,等效地是$α$ - fourier扩展估计值,是基于配置文件分解参数确定的。我们的主要工具之一是来自范德尔式引理的运算符 - 连接脱位属性后果。我们的结果在不对称情况下也有效。此外,我们获得了非端点$α$ -Strichartz的不平等现象的极端。
A necessary and sufficient condition on the precompactness of extremal sequences for one dimensional $α$-Strichartz inequalities, equivalently $α$-Fourier extension estimates, is established based on the profile decomposition arguments. One of our main tools is an operator-convergence dislocation property consequence which comes from the van der Corput Lemma. Our result is valid in asymmetric cases as well. In addition, we obtain the existence of extremals for non-endpoint $α$-Strichartz inequalities.