论文标题

$ b _ {(s)}^0 \ to ϕϕ \ to(k^+k^ - )(k^+k^ - )$衰减的研究

Study of $B_{(s)}^0 \to ϕϕ\to (K^+K^-)(K^+K^-)$ decays in the perturbative QCD approach

论文作者

Yan, Da-Cheng, Rui, Zhou, Xiao, Zhen-Jun, Li, Ya

论文摘要

在这项工作中,我们对企鹅的主导过程进行了详细的分析$ b _ {(s)}^0 \ to ϕϕ \ to(k^+k^ - )(k^+k^ - )$在扰动QCD(pqcd)方法中。除了主要的$ p $ - 波共振之外,标量背景$ f_0(980)\ to k^+k^ - $还考虑了。我们通过将PQCD分解公式拟合到三体和四体$ b $衰减的测量分支比例中,将Gegenbauer瞬间以$ kk $ $ $ $ $ $ $ $ $衰减提高。我们从相应的四体衰减模式中提取两体$ b _ {(s)}^0 \至ϕ ϕ $的分支比率衰减,并计算相关的极化分数以及两个相对阶段$ ϕ _ {\ Parallel,\ Perpall,\ perp} $,与先前的预测一致。 “ True”三级产品不对称(TPA)的PQCD预测为零,由于弱相差的消失,在标准模型中预期,并支持CDF和LHCB协作报告的当前数据。一个大的“假” tpa $ \ Mathcal {a} _ \ text {t-fake}^1 = 30.4 \%$ $ $ b^0_s \ to(k^+k^ - )(k^+k^ - )(k^+k^ - )$首次预测到实现最终的最终互动的表明,这表示了重要的最终互动。还可以预测稀有衰减通道的$ b^0 \ to(k^+k^ - )(k^+k^ - )$的TPA,也可以预测,并且可以在不久的将来进行测试。

In this work, we make a detailed analysis on the penguin-dominant processes $B_{(s)}^0 \to ϕϕ\to (K^+K^-)(K^+K^-)$ in the perturbative QCD (PQCD) approach. In addition to the dominant $P$-wave resonance, the scalar background $f_0(980) \to K^+K^-$ is also accounted for. We improve the Gegenbauer moments in $KK$ two-meson distribution amplitudes by fitting the PQCD factorization formulas to measured branching ratios of three-body and four-body $B$ decays. We extract the branching ratios of two-body $B_{(s)}^0 \to ϕϕ$ decays from the corresponding four-body decay modes and calculate the relevant polarization fractions together with two relative phases $ϕ_{\parallel,\perp}$, which are consistent with the previous theoretical predictions. The PQCD predictions for the "true" triple product asymmetries (TPAs) are zero which are expected in the standard model due to the vanishing weak phase difference, and support the current data reported by the CDF and LHCb Collaborations. A large "fake" TPA $\mathcal{A}_\text{T-fake}^1=30.4\%$ of the decay $B^0_s \to ϕϕ\to (K^+K^-)(K^+K^-)$ is predicted for the first time, which indicates the presence of the significant final-state interactions. The TPAs of the rare decay channel $B^0 \to ϕϕ\to (K^+K^-)(K^+K^-)$ are also predicted and can be tested in the near future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源