论文标题

评估有限差的基于异步的偏微分方程求解器用于反应流的求解器

Evaluation of finite difference based asynchronous partial differential equations solver for reacting flows

论文作者

Kumari, Komal, Cleary, Emmet, Desai, Swapnil, Donzis, Diego A., Chen, Jacqueline H., Aditya, Konduri

论文摘要

具有极高水平的平行性的下一代Exascale机器将为空前的参数范围内的复杂物理系统的大规模数值模拟提供大量计算资源。然而,需要新颖的数值方法,可扩展算法和重新设计的当前最新数值求解器才能缩放到这些机器上,这些机器的开销很小。一种基于部分微分方程的求解器的一种方法涉及使用高阶异步(AT)方案计算具有可能延迟或异步数据的空间衍生物,以促进缓解通信和同步瓶颈而不影响数字准确性。在本研究中,提出了使用多阶段runge-kutta方法实施时间离散化的有效方法。这些方案一起用于对规范反应问题进行异步模拟,在一维中证明,包括预混合,预混合的火焰传播和非预先固定的自动签名。仿真结果表明,尽管在处理元件(PE)边界的数据延迟,但AT方案在所有关键量的关键量(包括硬质中间物种)中产生非常小的数值错误。为了模拟超音速流,还讨论了与放松同步时使用的众所周知的休克分辨率WENO(本质上是非振荡)方案的降解数值精度。为了克服这种准确性的丧失,在线性和非线性方程式上得出并测试了高阶AT-WENO方案。最终,新颖的AT-WENO方案在PE边界延迟的爆炸波的传播中得到了证明。

Next-generation exascale machines with extreme levels of parallelism will provide massive computing resources for large scale numerical simulations of complex physical systems at unprecedented parameter ranges. However, novel numerical methods, scalable algorithms and re-design of current state-of-the art numerical solvers are required for scaling to these machines with minimal overheads. One such approach for partial differential equations based solvers involves computation of spatial derivatives with possibly delayed or asynchronous data using high-order asynchrony-tolerant (AT) schemes to facilitate mitigation of communication and synchronization bottlenecks without affecting the numerical accuracy. In the present study, an effective methodology of implementing temporal discretization using a multi-stage Runge-Kutta method with AT schemes is presented. Together these schemes are used to perform asynchronous simulations of canonical reacting flow problems, demonstrated in one-dimension including auto-ignition of a premixture, premixed flame propagation and non-premixed autoignition. Simulation results show that the AT schemes incur very small numerical errors in all key quantities of interest including stiff intermediate species despite delayed data at processing element (PE) boundaries. For simulations of supersonic flows, the degraded numerical accuracy of well-known shock-resolving WENO (weighted essentially non-oscillatory) schemes when used with relaxed synchronization is also discussed. To overcome this loss of accuracy, high-order AT-WENO schemes are derived and tested on linear and non-linear equations. Finally the novel AT-WENO schemes are demonstrated in the propagation of a detonation wave with delays at PE boundaries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源