论文标题

转移的替换在非交通性多元电源系列中,并观察到自由概率

Shifted Substitution in Non-Commutative Multivariate Power Series with a View Toward Free Probability

论文作者

Ebrahimi-Fard, Kurusch, Patras, Frédéric, Tapia, Nikolas, Zambotti, Lorenzo

论文摘要

我们研究了一项针对正式功率序列的特定群体定律,该法在其解释为线性形式引起的非交通变量中,这是在适当的分级连接的单词Hopf代数上。该组定律是左线的,因此与正式力量序列的前lie结构有关。我们研究了这些结构,并展示了它们如何用于在群体理论中重铸,形成了正式功率序列的各种身份和变换,这些身份和转换在非交通概率理论的背景下,尤其是在Voiculescu的自由概率理论中。

We study a particular group law on formal power series in non-commuting variables induced by their interpretation as linear forms on a suitable graded connected word Hopf algebra. This group law is left-linear and is therefore associated to a pre-Lie structure on formal power series. We study these structures and show how they can be used to recast in a group theoretic form various identities and transformations on formal power series that have been central in the context of non-commutative probability theory, in particular in Voiculescu's theory of free probability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源