论文标题
现实世界K-匿名应用程序:\ textsc {kgen}方法及其在欺诈交易中的评估
Real-world K-Anonymity Applications: the \textsc{KGen} approach and its evaluation in Fraudulent Transactions
论文作者
论文摘要
K-匿名性是数据匿名化测量,管理和治理的属性。在技术状态下已经描述了许多K-匿名性的实现,但是其中大多数无法在“大”数据集中使用大量属性,即从大数据中汲取的数据集。为了解决这一重大缺点,我们介绍和评估\ textsc {kgen}一种具有遗传算法的K匿名性的方法。 \ textsc {kgen}促进了这种元密度方法,因为它可以通过在相当多的输入中找到合理时间在合理的时间内找到伪最佳解决方案来解决问题。 \ textsc {kgen}允许数据管理器保证高匿名级别,同时保留可用性并防止信息熵丢失数据。与提供适合小型数据集的最佳全局解决方案的其他方法不同,\ textsc {kgen}也可以通过大数据集正常运行,同时仍提供良好的启动解决方案。评估结果表明,我们的方法仍然可以在由荷兰税务机构提供的现实世界数据集上有效地工作,其中有47个属性(即,要匿名化的数据集的列)和超过1.5k+的观察值(即该数据集的行),以及在数据集中,以及97个属性和3942属于3942的数据集中。
K-Anonymity is a property for the measurement, management, and governance of the data anonymization. Many implementations of k-anonymity have been described in state of the art, but most of them are not able to work with a large number of attributes in a "Big" dataset, i.e., a dataset drawn from Big Data. To address this significant shortcoming, we introduce and evaluate \textsc{KGen} an approach to K-anonymity featuring Genetic Algorithms. \textsc{KGen} promotes such a meta-heuristic approach since it can solve the problem by finding a pseudo-optimal solution in a reasonable time over a considerable load of input. \textsc{KGen} allows the data manager to guarantee a high anonymity level while preserving the usability and preventing loss of information entropy over the data. Differently from other approaches that provide optimal global solutions catered for small datasets, \textsc{KGen} works properly also over Big datasets while still providing a good-enough solution. Evaluation results show how our approach can still work efficiently on a real world dataset, provided by Dutch Tax Authority, with 47 attributes (i.e., the columns of the dataset to be anonymized) and over 1.5K+ observations (i.e., the rows of that dataset), as well as on a dataset with 97 attributes and over 3942 observations.