论文标题

在近美丁群和一类预期线性SDE上

On near-martingales and a class of anticipating linear SDEs

论文作者

Kuo, Hui-Hsiung, Shrestha, Pujan, Sinha, Sudip, Sundar, Padmanabhan

论文摘要

本文的主要目的是证明近乎定理的可选可选,并为一类预期的线性随机微分方程建立解决性和较大的偏差。我们使用两种方法证明了解决方案的存在和唯一性:(1)使用ANSATZ AYED-KUO差异公式,以及(2)通过在Skorokhod意义上解释积分的新型编织技术。我们建立了弗里德林 - 温泽尔型大偏差,用于解决此类方程的解决方案。

The primary goal of this paper is to prove a near-martingale optional stopping theorem and establish solvability and large deviations for a class of anticipating linear stochastic differential equations. We prove the existence and uniqueness of solutions using two approaches: (1) Ayed-Kuo differential formula using an ansatz, and (2) a novel braiding technique by interpreting the integral in the Skorokhod sense. We establish a Freidlin-Wentzell type large deviations result for solution of such equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源