论文标题

根据机器学习

Time Efficient Joint UAV-BS Deployment and User Association based on Machine Learning

论文作者

Ma, Bo, Zhang, Zitian, Zhang, Jiliang, Zhang, Jie

论文摘要

本文提出了一种时间效率的机制,以减少解决联合无人驾驶飞机基站(UAV-BS)部署和用户/传感器协会(UDUA)问题,旨在最大化下行链路总和传输吞吐量。联合UDUA问题分解为两个子问题:一个是用户关联子问题,它在某些UAV-BS位置之间获得了空中和地面节点之间的最佳匹配策略;另一个是UAV-BS部署子问题,试图找到UAV-BSS的最佳位置组合,从而使UAV-BSS的所有可能位置组合中第一个子问题的解决方案最佳。在提出的机制中,我们将用户关联子问题转换为等效的两分匹配问题,并使用Kuhn-Munkres算法解决它。对于UAV-BS部署子问题,我们从理论上证明,如果每个新用户分布都采用先前用户分布的最佳UAV-BS部署策略,则与新用户分布的真正最佳策略相比,如果两个用户分布足够相似。基于我们的数学分析,用户分布之间的相似性水平已很好地定义,并成为解决第二个子问题的关键。数值结果表明,与基准方法相比,所提出的UDUA机制可以实现平均下行链路总和传输吞吐量和故障率,而计算时间大大减少。

This paper proposes a time-efficient mechanism to decrease the on-line computing time of solving the joint unmanned aerial vehicle base station (UAV-BS) deployment and user/sensor association (UDUA) problem aiming at maximizing the downlink sum transmission throughput. The joint UDUA problem is decoupled into two sub-problems: one is the user association sub-problem, which gets the optimal matching strategy between aerial and ground nodes for certain UAV-BS positions; and the other is the UAV-BS deployment sub-problem trying to find the best position combination of the UAV-BSs that make the solution of the first sub-problem optimal among all the possible position combinations of the UAV-BSs. In the proposed mechanism, we transform the user association sub-problem into an equivalent bipartite matching problem and solve it using the Kuhn-Munkres algorithm. For the UAV-BS deployment sub-problem, we theoretically prove that adopting the best UAV-BS deployment strategy of a previous user distribution for each new user distribution will introduce little performance decline compared with the new user distribution's ground true best strategy if the two user distributions are similar enough. Based on our mathematical analyses, the similarity level between user distributions is well defined and becomes the key to solve the second sub-problem. Numerical results indicate that the proposed UDUA mechanism can achieve near-optimal system performance in terms of average downlink sum transmission throughput and failure rate with enormously reduced computing time compared with benchmark approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源