论文标题
在$ n $ - 上二次二次形式上
On $n$-universal quadratic forms over dyadic local fields
论文作者
论文摘要
令$ n \ ge 2 $为整数。我们通过使用Beli的Norm Generators Base of Beri理论的不变式来提供对二元局部领域的整体二次形式的必要条件。此外,我们提供了一套最少的集合,用于测试二$二辅助二次形式,以二元组的本地田地,作为Bhargava和Hanke的290 Theorem(或Conway and Conway and Schneeberger's 15 Theorem)的类似物,并具有通用Quadratic形式,并具有integer系数。
Let $ n \ge 2$ be an integer. We give necessary and sufficient conditions for an integral quadratic form over dyadic local fields to be $ n $-universal by using invariants from Beli's theory of bases of norm generators. Also, we provide a minimal set for testing $ n $-universal quadratic forms over dyadic local fields, as an analogue of Bhargava and Hanke's 290-theorem (or Conway and Schneeberger's 15-theorem) on universal quadratic forms with integer coefficients.