论文标题

羽毛鸟群在一起:域自适应分段的类别差异指南

Birds of A Feather Flock Together: Category-Divergence Guidance for Domain Adaptive Segmentation

论文作者

Yuan, Bo, Zhao, Danpei, Shao, Shuai, Yuan, Zehuan, Wang, Changhu

论文摘要

无监督的域适应性(UDA)旨在增强从源域到目标域的某个模型的概括能力。当前的UDA模型致力于通过最大程度地减少源域和目标域之间的特征差异来减轻域的转移,但通常忽略了类混乱问题。在这项工作中,我们提出了类间分离和阶层内聚集(ISIA)机制。它鼓励相同类别之间的跨域代表性一致性和不同类别之间的差异化。这样,将属于同一类别的功能对齐在一起,并且可混淆的类别分开。通过测量每个类别的对齐复杂性,我们设计了一个自适应加权实例匹配(AIM)策略,以进一步优化实例级别的自适应。根据我们提出的方法,我们还为跨域语义分割任务提出了一个分层无监督的域适应框架。通过执行图像级,特征级,类别级别和实例级别对齐,我们的方法实现了从源域到目标域的模型更强的概括性能。在两个典型的跨域语义细分任务,即GTA5到CityScapes and Synthia to CityScapes,我们的方法实现了最新的细分精度。我们还基于公开可用的数据,即遥感建筑物细分和道路细分,以构建两个跨域语义分割数据集,用于域自适应细分。

Unsupervised domain adaptation (UDA) aims to enhance the generalization capability of a certain model from a source domain to a target domain. Present UDA models focus on alleviating the domain shift by minimizing the feature discrepancy between the source domain and the target domain but usually ignore the class confusion problem. In this work, we propose an Inter-class Separation and Intra-class Aggregation (ISIA) mechanism. It encourages the cross-domain representative consistency between the same categories and differentiation among diverse categories. In this way, the features belonging to the same categories are aligned together and the confusable categories are separated. By measuring the align complexity of each category, we design an Adaptive-weighted Instance Matching (AIM) strategy to further optimize the instance-level adaptation. Based on our proposed methods, we also raise a hierarchical unsupervised domain adaptation framework for cross-domain semantic segmentation task. Through performing the image-level, feature-level, category-level and instance-level alignment, our method achieves a stronger generalization performance of the model from the source domain to the target domain. In two typical cross-domain semantic segmentation tasks, i.e., GTA5 to Cityscapes and SYNTHIA to Cityscapes, our method achieves the state-of-the-art segmentation accuracy. We also build two cross-domain semantic segmentation datasets based on the publicly available data, i.e., remote sensing building segmentation and road segmentation, for domain adaptive segmentation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源