论文标题

图形中的韧性,汉密尔顿性和光谱半径

Toughness, hamiltonicity and spectral radius in graphs

论文作者

Fan, Dandan, Lin, Huiqiu, Lu, Hongliang

论文摘要

在图理论中,对图形中哈密顿周期存在的研究是一个经典问题。通过融合韧性和光谱条件,我们可以从另一个角度考虑Chvátal的猜想:保证在$ t $ tough图中保证哈密顿周期存在的光谱条件是什么?我们首先给出$ 1 $ -tough图的答案,即,如果$ρ(g)\geqρ(m_ {n})$,则$ g $包含一个哈密顿循环,除非$ g \ g \ cong m_ {n} $,否则$ m_ {n} = n} = k_ {nabla k_ {1} \ nabla k_} $ k_ {n-4}^{+3} $是从$ 3K_ {1} \ cup k_ {n-4} $获得的图表,通过在$ 3K_ {1} $和$ k_ {n-4} $之间添加三个独立边缘。 Brouwer的韧性定理指出,每个$ d $ regented Graph始终具有$ t(g)> \ frac {d}λ-1$,其中$λ$是邻接矩阵的第二大绝对特征值。在本文中,我们根据其光谱半径扩展了结果,即,我们为图形提供了一个频谱条件,以最低度$δ$和$ t $ -tough为1个。

The study of the existence of hamiltonian cycles in a graph is a classic problem in graph theory. By incorporating toughness and spectral conditions, we can consider Chvátal's conjecture from another perspective: what is the spectral condition to guarantee the existence of a hamiltonian cycle among $t$-tough graphs? We first give the answer to $1$-tough graphs, i.e. if $ρ(G)\geqρ(M_{n})$, then $G$ contains a hamiltonian cycle, unless $G\cong M_{n}$, where $M_{n}=K_{1}\nabla K_{n-4}^{+3}$ and $K_{n-4}^{+3}$ is the graph obtained from $3K_{1}\cup K_{n-4}$ by adding three independent edges between $3K_{1}$ and $K_{n-4}$. The Brouwer's toughness theorem states that every $d$-regular connected graph always has $t(G)>\frac{d}λ-1$ where $λ$ is the second largest absolute eigenvalue of the adjacency matrix. In this paper, we extend the result in terms of its spectral radius, i.e. we provide a spectral condition for a graph to be 1-tough with minimum degree $δ$ and to be $t$-tough, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源