论文标题

MDS和AMDS符号对代码是由重复的根代码构建的

MDS and AMDS symbol-pair codes are constructed from repeated-root codes

论文作者

Tang, Xiuxin, Luo, Rong

论文摘要

Cassuto和Blaum在2010年引入的符号对代码旨在防止符号对读取通道中的对错误。符号纠正中的中央主题之一是构造最大距离(MDS)符号对代码,该代码具有最大的配对校正性能。在本文中,我们为具有代码长度$ lp $的两类MDS符号代码构建了更通用的发电机多项式。 Based on repeated-root cyclic codes, we derive all MDS symbol-pair codes of length $3p$, when the degree of the generator polynomials is no more than 10. We also give two new classes of (almost maximal distance separable) AMDS symbol-pair codes with the length $lp$ or $4p$ by virtue of repeated-root cyclic codes.对于长度$ 3p $,当发电机多项式的程度小于10时,我们会得出所有AMDS符号代码。 主要结果是通过确定有限场上某些方程的解。

Symbol-pair codes introduced by Cassuto and Blaum in 2010 are designed to protect against the pair errors in symbol-pair read channels. One of the central themes in symbol-error correction is the construction of maximal distance separable (MDS) symbol-pair codes that possess the largest possible pair-error correcting performance. In this paper, we construct more general generator polynomials for two classes of MDS symbol-pair codes with code length $lp$. Based on repeated-root cyclic codes, we derive all MDS symbol-pair codes of length $3p$, when the degree of the generator polynomials is no more than 10. We also give two new classes of (almost maximal distance separable) AMDS symbol-pair codes with the length $lp$ or $4p$ by virtue of repeated-root cyclic codes. For length $3p$, we derive all AMDS symbol-pair codes, when the degree of the generator polynomials is less than 10. The main results are obtained by determining the solutions of certain equations over finite fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源