论文标题
关于有限一般代表类型的代数
On algebras of finite general representation type
论文作者
论文摘要
我们介绍了有限维代数的``有限的一般代表类型''的概念,该属性与Chindris-Kinser-Weyman引入的``密集轨道属性''相关的属性。我们使用几何形状,组合和代数方法的相互作用来生产野生表示类型的代数类型但有限的一般表示类型。为了完整性,我们还提供了一个简短的证明,即离散一般表示类型的唯一本地代数已经是有限表示类型。我们以代数的一般表示形式以brauer-thrall风格的猜想结尾。
We introduce the notion of ``finite general representation type'' for a finite-dimensional algebra, a property related to the ``dense orbit property'' introduced by Chindris-Kinser-Weyman. We use an interplay of geometric, combinatorial, and algebraic methods to produce a family of algebras of wild representation type but finite general representation type. For completeness, we also give a short proof that the only local algebras of discrete general representation type are already of finite representation type. We end with a Brauer-Thrall style conjecture for general representations of algebras.