论文标题

S-Matrix的$ i \ varepsilon $是什么?

What is the $i\varepsilon$ for the S-matrix?

论文作者

Hannesdottir, Holmfridur S., Mizera, Sebastian

论文摘要

S-Matrix可以以与因果关系一致的方式复杂化吗?自1960年代以来,对这个问题的肯定答案已被肯定地理解为$ 2 \ 2 $ 2 $在低势头转移时具有质量差异的最轻粒子的散射,S-Matrix在threshold分支切割处除外,S-Matrix无处不在。我们询问类似的图片是否扩展到包括无质量场,UV/IR差异和不稳定颗粒的现实理论,例如标准模型。尤其是在循环中运行的光状态的情况下,传统的$ i \ varepsilon $处方接近物理区域的处方可能会崩溃,因为单个Feynman图的因果关系要求可能会相互不相容。我们证明了这种分析性问题与单位性并不矛盾。取而代之的是,应该将它们视为有限宽度的效果,这些效果消失在理想化的$ 2 \ 2 $散射幅度的情况下,没有不稳定的颗粒,但可能会持续更高的多样性。为了解决这些问题,我们建议在Mandelstam不变的空间中削减分支切割的$ i \ varepsilon $样处方,而无需修改分析属性。该过程导致在运动空间的实际部分周围有一个复杂的条带,S-Matrix仍然是因果关系。除了从现代角度对扰动S-Matrix的分析属性进行教学介绍之外,我们还以象征性和数值来说明所有显式示例上的所有点。为了帮助调查相关问题,我们介绍了许多工具,包括全体形态切割规则,分散关系的新方法以及分支机构附近Feynman Integrals的本地行为的公式。

Can the S-matrix be complexified in a way consistent with causality? Since the 1960's, the affirmative answer to this question has been well-understood for $2 \to 2$ scattering of the lightest particle in theories with a mass gap at low momentum transfer, where the S-matrix is analytic everywhere except at normal-threshold branch cuts. We ask whether an analogous picture extends to realistic theories, such as the Standard Model, that include massless fields, UV/IR divergences, and unstable particles. Especially in the presence of light states running in the loops, the traditional $i\varepsilon$ prescription for approaching physical regions might break down, because causality requirements for the individual Feynman diagrams can be mutually incompatible. We demonstrate that such analyticity problems are not in contradiction with unitarity. Instead, they should be thought of as finite-width effects that disappear in the idealized $2\to 2$ scattering amplitudes with no unstable particles, but might persist at higher multiplicity. To fix these issues, we propose an $i\varepsilon$-like prescription for deforming branch cuts in the space of Mandelstam invariants without modifying the analytic properties. This procedure results in a complex strip around the real part of the kinematic space, where the S-matrix remains causal. In addition to giving a pedagogical introduction to the analytic properties of the perturbative S-matrix from a modern point of view, we illustrate all the points on explicit examples, both symbolically and numerically. To help with the investigation of related questions, we introduce a number of tools, including holomorphic cutting rules, new approaches to dispersion relations, as well as formulae for local behavior of Feynman integrals near branch points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源