论文标题

BISYN-GAT+:基于方面情感分析的Bi-Syntax意识到图表网络

BiSyn-GAT+: Bi-Syntax Aware Graph Attention Network for Aspect-based Sentiment Analysis

论文作者

Liang, Shuo, Wei, Wei, Mao, Xian-Ling, Wang, Fei, He, Zhiyong

论文摘要

基于方面的情感分析(ABSA)是一项精细的情感分析任务,旨在使特定方面的情感极性推断对齐方面和相应的情感。这是具有挑战性的,因为句子可能包含多个方面或复杂的关系(例如,有条件,协调或逆转)关系。最近,使用图神经网络利用依赖性语法信息是最受欢迎的趋势。尽管取得了成功,但在很大程度上依赖依赖树的方法构成了挑战,以准确地建模各个方面的对准及其表达情感的单词,因为依赖树可能会提供无关的关联的嘈杂信号(例如,图2中的“伟大”和“可怕”之间的“ conj”关系)。在本文中,为了减轻这个问题,我们提出了一个双轴法意识到的图形注意网络(BISYN-GAT+)。具体而言,bisyn-gat+完全利用句子组成树的语法信息(例如,短语分割和层次结构),以模拟每个单个方面的情感感知上下文(称为intra-context),以及跨越跨文本的情感关系(称为intra-context)和情感关系。四个基准数据集的实验表明,BISYN-GAT+的表现始终超过最先进的方法。

Aspect-based sentiment analysis (ABSA) is a fine-grained sentiment analysis task that aims to align aspects and corresponding sentiments for aspect-specific sentiment polarity inference. It is challenging because a sentence may contain multiple aspects or complicated (e.g., conditional, coordinating, or adversative) relations. Recently, exploiting dependency syntax information with graph neural networks has been the most popular trend. Despite its success, methods that heavily rely on the dependency tree pose challenges in accurately modeling the alignment of the aspects and their words indicative of sentiment, since the dependency tree may provide noisy signals of unrelated associations (e.g., the "conj" relation between "great" and "dreadful" in Figure 2). In this paper, to alleviate this problem, we propose a Bi-Syntax aware Graph Attention Network (BiSyn-GAT+). Specifically, BiSyn-GAT+ fully exploits the syntax information (e.g., phrase segmentation and hierarchical structure) of the constituent tree of a sentence to model the sentiment-aware context of every single aspect (called intra-context) and the sentiment relations across aspects (called inter-context) for learning. Experiments on four benchmark datasets demonstrate that BiSyn-GAT+ outperforms the state-of-the-art methods consistently.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源