论文标题

旋转液体材料中的自旋敏感运输:揭示自旋各向异性的鲁棒性

Spin sensitive transport in a spin liquid material: revealing a robustness of spin anisotropy

论文作者

Idzuchi, H., Kimata, M., Okamoto, S., Laurell, P., Mohanta, N., Cothrine, M., Nagler, S. E., Mandrus, D., Banerjee, A., Chen, Y. P.

论文摘要

Alpha-phase(A-)RUCL_3已成为量子自旋液体(QSL)的主要候选者,该量子有望与耐断层量子计算相关的外来准颗粒。在这里,我们报告使用近端自旋金属铂(PT)在A-RUCL_3中探测A-Rucl_3中旋转旋转相关性。横向和纵向电阻均表现出振荡作为平面磁场和电流之间角度的函数,类似于抗fiferromagnet/pt异质结构中先前测量的自旋霍尔磁磁力(SMR)。在磁场范围内和之外,观察到振荡从1.5 t到18 t,在a-rucl_3中报告了抗铁磁序和QSL状态。 SMR振荡表明,A-Rucl3中的旋转在很大程度上锁定在横向磁场的平面量化轴上,构成了连续对称性破裂状态,不一定代表远距离顺序。自旋轴的这种稳健的各向异性发现与A-RUCL_3中报告的QSL签名有关的临界能量尺度。模拟表明与中等高磁场的主要抗铁磁相关性可能支持SMR振荡。在我们的实验中证明的a-rucl_3和pt中自旋态的耦合为探索QSL材料的外来旋转阶段和装置功能开辟了运输路线。

Alpha-phase (a-) RuCl_3 has emerged as a prime candidate for a quantum spin liquid (QSL) that promises exotic quasiparticles relevant for fault-tolerant quantum computation. Here, we report spin sensitive transport measurements to probe spin correlation in a-RuCl_3 using a proximal spin Hall metal platinum (Pt). Both transverse and longitudinal resistivities exhibit oscillations as function of the angle between an in-plane magnetic field and the current, akin to previously measured spin Hall magnetoresistance (SMR) in antiferromagnet/Pt heterostructures. The oscillations are observed from 1.5 T to 18 T, both within and beyond the magnetic field range where the antiferromagnetic order and QSL state are reported in a-RuCl_3. The SMR oscillations show that spins in a-RuCl3 are largely locked to an in-plane quantization axis transverse to the magnetic field, constituting a continuous-symmetry-broken state that does not necessarily represent a long-range order. This robust anisotropy of spin axis uncovers critical energy scales connected with reported QSL signatures in a-RuCl_3. Simulations suggest a predominantly antiferromagnetic correlation to moderately high magnetic-fields, that may support the SMR oscillations. The coupling of the spin states within a-RuCl_3 and Pt demonstrated in our experiment opens a transport route to exploring exotic spin phases and device functionalities of QSL materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源