论文标题

IA-GCN:交互式图卷积网络供推荐

IA-GCN: Interactive Graph Convolutional Network for Recommendation

论文作者

Zhang, Yinan, Wang, Pei, Liu, Congcong, Zhao, Xiwei, Qi, Hao, He, Jie, Jin, Junsheng, Peng, Changping, Lin, Zhangang, Shao, Jingping

论文摘要

最近,Graph卷积网络(GCN)已成为基于协作过滤(CF)推荐系统(RS)的新型制度。通过在用户 - 项目两部分图上执行嵌入传播,然后根据表示形式向用户提供个性化的项目建议,从而学习信息性用户和项目表示形式。尽管有效,但现有算法在嵌入过程中忽略了用户项目对之间的宝贵交互功能。当预测用户对不同项目的偏好时,它们仍然以相同的方式汇总用户树,而无需强调用户社区中与目标相关的信息。这样的统一聚合方案很容易导致次优的用户和项目表示,从而在一定程度上限制了模型的表现力。 在这项工作中,我们通过在每个用户项目对之间构建双边互动指导并提出一个名为IA-GCN的新模型(交互式GCN简称)来解决此问题。具体来说,当从其社区学习用户表示时,我们将更高的注意力权重分配给类似于目标项目的邻居。相应地,当学习项目表示形式时,我们会更加注意类似于目标用户的邻居。这会导致交互式和可解释的特征,从而有效地通过每个图卷积操作来提炼目标特定信息。我们的模型建立在LightGCN的基础上,这是CF的最先进的GCN模型,可以以端到端方式与各种基于GCN的CF架构结合使用。在三个基准数据集上进行的广泛实验证明了IA-GCN的有效性和鲁棒性。

Recently, Graph Convolutional Network (GCN) has become a novel state-of-art for Collaborative Filtering (CF) based Recommender Systems (RS). It is a common practice to learn informative user and item representations by performing embedding propagation on a user-item bipartite graph, and then provide the users with personalized item suggestions based on the representations. Despite effectiveness, existing algorithms neglect precious interactive features between user-item pairs in the embedding process. When predicting a user's preference for different items, they still aggregate the user tree in the same way, without emphasizing target-related information in the user neighborhood. Such a uniform aggregation scheme easily leads to suboptimal user and item representations, limiting the model expressiveness to some extent. In this work, we address this problem by building bilateral interactive guidance between each user-item pair and proposing a new model named IA-GCN (short for InterActive GCN). Specifically, when learning the user representation from its neighborhood, we assign higher attention weights to those neighbors similar to the target item. Correspondingly, when learning the item representation, we pay more attention to those neighbors resembling the target user. This leads to interactive and interpretable features, effectively distilling target-specific information through each graph convolutional operation. Our model is built on top of LightGCN, a state-of-the-art GCN model for CF, and can be combined with various GCN-based CF architectures in an end-to-end fashion. Extensive experiments on three benchmark datasets demonstrate the effectiveness and robustness of IA-GCN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源