论文标题
有效的方案,用于实现具有电路量子电动动力学的光子QUBIT的多重控制相位门
Efficient scheme for realizing a multiplex-controlled phase gate with photonic qubits in circuit quantum electrodynamics
论文作者
论文摘要
我们提出了一个有效的方案,以实现多重控制的相位门,该相位栅极与多个光子量动数同时控制一个基于电路量子电动力学(QED)的一个目标光子量子量子。为了方便起见,我们将这个多Quart Gate表示为MCP门。通过使用两级耦合器将多个腔体实现,可以实现大门。这里的耦合器是一个超导量子。该方案很简单,因为门实现只需要操作的\ textit {一个步骤}。此外,该方案非常笼统,因为每个光子量子位的两个逻辑状态可以用真空状态和任意的非效率状态(例如,Fock状态,Fock状态,CAT状态或相干状态等)编码,这是正交或Quasi-oferto的态度。该方案还有一些其他优势:因为仅使用两个级别的耦合器,即没有使用辅助水平,因此避免了较高的耦合器能量的偏差;门操作时间不取决于量子台的数量;由于未应用测量值,因此确定性地实现了门。例如,我们通过数值分析了基于电路的实验性可行性,即实现具有光子量动数的三个Qubit MCP栅极,每个MCP门都通过真空状态和CAT状态进行编码。该方案可以应用于在广泛的物理系统中完成相同的任务,该系统由多个微波或光腔组成,这些微波腔与两级耦合器(例如天然或人工原子)结合在一起。
We propose an efficient scheme to implement a multiplex-controlled phase gate with multiple photonic qubits simultaneously controlling one target photonic qubit based on circuit quantum electrodynamics (QED). For convenience, we denote this multiqubit gate as MCP gate. The gate is realized by using a two-level coupler to couple multiple cavities. The coupler here is a superconducting qubit. This scheme is simple because the gate implementation requires only \textit{one step} of operation. In addition, this scheme is quite general because the two logic states of each photonic qubit can be encoded with a vacuum state and an arbitrary non-vacuum state (e.g., a Fock state, a superposition of Fock states, a cat state, or a coherent state, etc.) which is orthogonal or quasi-orthogonal to the vacuum state. The scheme has some additional advantages: Because only two levels of the coupler are used, i.e., no auxiliary levels are utilized, decoherence from higher energy levels of the coupler is avoided; the gate operation time does not depend on the number of qubits; and the gate is implemented deterministically because no measurement is applied. As an example, we numerically analyze the circuit-QED based experimental feasibility of implementing a three-qubit MCP gate with photonic qubits each encoded via a vacuum state and a cat state. The scheme can be applied to accomplish the same task in a wide range of physical system, which consists of multiple microwave or optical cavities coupled to a two-level coupler such as a natural or artificial atom.