论文标题

各向异性分数能量的渐近行为

Asymptotic behavior for anisotropic fractional energies

论文作者

Bonder, Julian Fernandez, Salort, Ariel

论文摘要

在本文中,我们研究了各向异性分数能量的渐近行为,作为分数参数$ s \ in(0,1)$的方法,均以$ s \ uparrow 1 $ 1 $和$ s \ downarrow 0 $在著名论文的精神上\ cite {ms}。 然后,将con con Case $ s \ uparrow 1 $ 1 $分析了解决相应最小化问题的解决方案的行为,最后,我们还研究了问题,其中均化效应与$ s \ uparrow 1 $时发生的本地化现象相结合。

In this paper we investigate the asymptotic behavior of anisotropic fractional energies as the fractional parameter $s\in (0,1)$ approaches both $s\uparrow 1$ and $s\downarrow 0$ in the spirit of the celebrated papers of Bourgain-Brezis-Mironescu \cite{BBM} and Maz'ya-Shaposhnikova \cite{MS}. Then, focusing con the case $s\uparrow 1$ we analyze the behavior of solutions to the corresponding minimization problems and finally, we also study the problem where a homogenization effect is combined with the localization phenomena that occurs when $s\uparrow 1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源