论文标题

通过准确的激活剪辑和自适应批归归量化的无数据量化

Data-Free Quantization with Accurate Activation Clipping and Adaptive Batch Normalization

论文作者

He, Yefei, Zhang, Luoming, Wu, Weijia, Zhou, Hong

论文摘要

无数据量化是一项将神经网络压缩到低位的任务,而无需访问原始培训数据。大多数现有的无数据量化方法导致由于不准确的激活剪接范围和量化误差而导致严重的性能降解,尤其是对于低宽度。在本文中,我们提出了一种简单而有效的无数据量化方法,具有准确的激活剪辑和自适应批准化。精确的激活剪辑(AAC)通过利用完全精确模型的准确激活信息来提高模型的准确性。自适应批发归一化首先建议通过自适应更新批处理层来解决分布更改中的量化错误。广泛的实验表明,所提出的无数据量化方法可以产生令人惊讶的性能,在Imagenet数据集上达到RESNET18的64.33%的TOP-1准确性,绝对改进的3.7%优于现有的最新方法。

Data-free quantization is a task that compresses the neural network to low bit-width without access to original training data. Most existing data-free quantization methods cause severe performance degradation due to inaccurate activation clipping range and quantization error, especially for low bit-width. In this paper, we present a simple yet effective data-free quantization method with accurate activation clipping and adaptive batch normalization. Accurate activation clipping (AAC) improves the model accuracy by exploiting accurate activation information from the full-precision model. Adaptive batch normalization firstly proposes to address the quantization error from distribution changes by updating the batch normalization layer adaptively. Extensive experiments demonstrate that the proposed data-free quantization method can yield surprisingly performance, achieving 64.33% top-1 accuracy of ResNet18 on ImageNet dataset, with 3.7% absolute improvement outperforming the existing state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源