论文标题

可编程的汉密尔顿工程与二次量子傅立叶变换

Programmable Hamiltonian engineering with quadratic quantum Fourier transform

论文作者

Wang, Pei, Huang, Zhijuan, Qiu, Xingze, Li, Xiaopeng

论文摘要

量子傅立叶变换(QFT)是用于量子算法的广泛使用的构件,其可扩展的实现在实验中具有挑战性。在这里,我们提出了二次量子傅立叶变换(QQFT)的方案,考虑到限制在光学晶格中的冷原子。该QQFT等同于单粒子子空间中的QFT,并在整个希尔伯特空间中产生不同的单一操作。我们显示,可以使用可编程激光电位来实施该QQFT协议,并通过实验中最近开发的数字微晶体设备技术来实施。 QQFT协议可以实现可编程的汉密尔顿工程,并允许对哈密顿模型进行量子模拟,这些模型很难通过常规方法实现。通过对一维庞加莱晶体物理学和二维拓扑平面波段进行量子模拟来证明我们的方法的灵活性,尽管QQFT协议在冷原子系统中有效地产生了所需的远距离隧道。我们发现这两个示例中的离散对称性和拓扑特性具有鲁棒性,具有一定程度的噪声,这些噪声在实验实现中可能存在。我们希望这种方法将为基于光学晶格的可编程量子模拟打开广泛的机会。

Quantum Fourier transform (QFT) is a widely used building block for quantum algorithms, whose scalable implementation is challenging in experiments. Here, we propose a protocol of quadratic quantum Fourier transform (QQFT), considering cold atoms confined in an optical lattice. This QQFT is equivalent to QFT in the single-particle subspace, and produces a different unitary operation in the entire Hilbert space. We show this QQFT protocol can be implemented using programmable laser potential with the digital-micromirror-device techniques recently developed in the experiments. The QQFT protocol enables programmable Hamiltonian engineering, and allows quantum simulations of Hamiltonian models, which are difficult to realize with conventional approaches. The flexibility of our approach is demonstrated by performing quantum simulations of one-dimensional Poincaré crystal physics and two-dimensional topological flat bands, where the QQFT protocol effectively generates the required long-range tunnelings despite the locality of the cold atom system. We find the discrete Poincaré symmetry and topological properties in the two examples respectively have robustness against a certain degree of noise that is potentially existent in the experimental realization. We expect this approach would open up wide opportunities for optical lattice based programmable quantum simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源