论文标题

与宇宙学的热力学合奏

Thermodynamic ensembles with cosmological horizons

论文作者

Banihashemi, Batoul, Jacobson, Ted

论文摘要

De Sitter Horizo​​n的熵很久以前是由Gibbons衍生而来的,并通过重力分区函数来鹰。由于没有定义集合的温度或能量的边界,因此其方法的统计基础仍然晦涩难懂。为了将统计合奏放在牢固的基础上,我们引入了一个人工“ York Boundare”,具有规范或微观边界条件,就像以前针对黑洞集合所做的那样。分区函数和状态的密度表示为在受约束的,球体降低的纯3+1维重力的相位空间中的路径上的积分,并具有正宇宙常数。分析了与集成的领域和轮廓有关的问题,并且为这些问题所采用的选择是尽可能合理的。规范合奏包括一块没有地平线的时空,以及包含黑洞或宇宙学范围的配置。我们研究热力学阶段和(以)稳定性,并讨论可以稳定规范合奏中宇宙学范围的不断发展的储层模型。最后,我们解释了如何将四个速率上的长臂猿分区函数推导为定义明确的热力学集合的限制,以及从这个角度来看,为什么它计算宇宙学范围内的Hilbert Space的维度。

The entropy of a de Sitter horizon was derived long ago by Gibbons and Hawking via a gravitational partition function. Since there is no boundary at which to define the temperature or energy of the ensemble, the statistical foundation of their approach has remained obscure. To place the statistical ensemble on a firm footing we introduce an artificial "York boundary", with either canonical or microcanonical boundary conditions, as has been done previously for black hole ensembles. The partition function and the density of states are expressed as integrals over paths in the constrained, spherically reduced phase space of pure 3+1 dimensional gravity with a positive cosmological constant. Issues related to the domain and contour of integration are analyzed, and the adopted choices for those are justified as far as possible. The canonical ensemble includes a patch of spacetime without horizon, as well as configurations containing a black hole or a cosmological horizon. We study thermodynamic phases and (in)stability, and discuss an evolving reservoir model that can stabilize the cosmological horizon in the canonical ensemble. Finally, we explain how the Gibbons-Hawking partition function on the 4-sphere can be derived as a limit of well-defined thermodynamic ensembles and, from this viewpoint, why it computes the dimension of the Hilbert space of states within a cosmological horizon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源