论文标题
拓扑阶段的较高晶格仪理论模型II:(2+1) - 维情况
Excitations in the Higher Lattice Gauge Theory Model for Topological Phases II: The (2+1)-Dimensional Case
论文作者
论文摘要
在本系列的第二篇论文中,我们研究了基于较高晶格仪理论的拓扑阶段的2+1D版本的2+1D版本。我们构建了产生类似点的激发的色带算子。这些色带操作员用于查找由点状激发带来的编织特性和拓扑电荷。该模型还托管了由膜操作员产生的循环样激励。通过考虑基础的更改,我们表明,在某些情况下,某些类似环的激发代表了与不同对称性相关的基态相对应的斑块之间的域壁,我们发现这种对称性。我们还将较高的晶格量规理论汉密尔顿绘制为富含对称性的弦网模型,用于富含对称性的拓扑阶段(集合),由海因里希,伯内尔,菲德科夫斯基和莱文[物理学。 Rev. B,94,235136(2016)],在一部分案件中再次。
In this work, the second paper of this series, we study the 2+1d version of a Hamiltonian model for topological phases based on higher lattice gauge theory. We construct the ribbon operators that produce the point-like excitations. These ribbon operators are used to find the braiding properties and topological charge carried by the point-like excitations. The model also hosts loop-like excitations, which are produced by membrane operators. By considering a change of basis, we show that, in certain cases, some loop-like excitations represent domain walls between patches corresponding to different symmetry-related ground states, and we find this symmetry. We also map the higher lattice gauge theory Hamiltonian to the symmetry enriched string-net model for symmetry enriched topological phases (SETs) described by Heinrich, Burnell, Fidkowski and Levin [Phys. Rev. B, 94, 235136 (2016)], again in a subset of cases.