论文标题

利用深层神经网络进行大规模的MIMO数据检测

Leveraging Deep Neural Networks for Massive MIMO Data Detection

论文作者

Nguyen, Ly V., Nguyen, Nhan T., Tran, Nghi H., Juntti, Markku, Swindlehurst, A. Lee, Nguyen, Duy H. N.

论文摘要

大量多输入多输出(MIMO)是新兴下一代无线系统的关键技术。在基础站使用大型天线阵列,大量的MIMO通过同时服务大量用户来实现大量的空间多路复用增长。但是,大规模MIMO信号处理(例如,数据检测)的复杂性随用户数量迅速增加,从而使常规的手工设计算法在计算上的效率降低。低复杂性大量的MIMO检测算法,尤其是受深度学习启发或有助于的算法,已成为一种有前途的解决方案。尽管存在许多MIMO检测算法,但该杂志论文的目的是提供有关如何利用深层神经网络(DNN)进行大量MIMO检测的见解。我们回顾了基于DNN的MIMO检测的最新发展,该检测结合了已建立的MIMO检测算法的领域知识,并具有DNN的学习能力。然后,我们对这些作品的关键数值指标进行比较。我们通过描述DNN在大型MIMO接收器中的未来研究领域和应用来结束。

Massive multiple-input multiple-output (MIMO) is a key technology for emerging next-generation wireless systems. Utilizing large antenna arrays at base-stations, massive MIMO enables substantial spatial multiplexing gains by simultaneously serving a large number of users. However, the complexity in massive MIMO signal processing (e.g., data detection) increases rapidly with the number of users, making conventional hand-engineered algorithms less computationally efficient. Low-complexity massive MIMO detection algorithms, especially those inspired or aided by deep learning, have emerged as a promising solution. While there exist many MIMO detection algorithms, the aim of this magazine paper is to provide insight into how to leverage deep neural networks (DNN) for massive MIMO detection. We review recent developments in DNN-based MIMO detection that incorporate the domain knowledge of established MIMO detection algorithms with the learning capability of DNNs. We then present a comparison of the key numerical performance metrics of these works. We conclude by describing future research areas and applications of DNNs in massive MIMO receivers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源