论文标题
迈向开放设定的对象检测和发现
Towards Open-Set Object Detection and Discovery
论文作者
论文摘要
通过人类对知识的追求,开放式对象检测(OSOD)旨在识别动态世界中未知的对象。但是,当前设置的一个问题是,所有预测的未知对象都与“未知”共享相同的类别,该类别需要通过人类的人类方法进行增量学习来标记新颖类。为了解决此问题,我们提出了一项新任务,即开放集对象检测和发现(OSODD)。这项新任务旨在扩展开放键对象探测器在不努力的情况下根据其视觉外观进一步发现未知对象类别的能力。我们提出了一种两阶段的方法,该方法首先使用开放集对象检测器预测已知和未知对象。然后,我们以无监督的方式研究预测对象的表示,并从一组未知对象中发现新类别。使用此方法,检测器能够检测属于已知类别的对象,并为未知类别的对象定义新的类别,并以最小的监督。我们在彻底的评估协议下在MS-Coco数据集上显示了我们的模型的性能。我们希望我们的工作将促进对更强大的现实检测系统的进一步研究。
With the human pursuit of knowledge, open-set object detection (OSOD) has been designed to identify unknown objects in a dynamic world. However, an issue with the current setting is that all the predicted unknown objects share the same category as "unknown", which require incremental learning via a human-in-the-loop approach to label novel classes. In order to address this problem, we present a new task, namely Open-Set Object Detection and Discovery (OSODD). This new task aims to extend the ability of open-set object detectors to further discover the categories of unknown objects based on their visual appearance without human effort. We propose a two-stage method that first uses an open-set object detector to predict both known and unknown objects. Then, we study the representation of predicted objects in an unsupervised manner and discover new categories from the set of unknown objects. With this method, a detector is able to detect objects belonging to known classes and define novel categories for objects of unknown classes with minimal supervision. We show the performance of our model on the MS-COCO dataset under a thorough evaluation protocol. We hope that our work will promote further research towards a more robust real-world detection system.