论文标题
3Deformrs:在点云上认证空间变形
3DeformRS: Certifying Spatial Deformations on Point Clouds
论文作者
论文摘要
3D计算机视觉模型通常用于安全至关重要的应用中,例如自动驾驶和手术机器人技术。对这些模型对现实变形的鲁棒性的新兴担忧必须实际上可靠地解决。在这项工作中,我们提出了3Deformrs,这是一种证明点云深神经网络(DNN)对现实世界变形的鲁棒性的方法。我们通过基于最近的工作来开发3Deformrs,即从像素强度扰动到矢量场变形。特别是,我们专门使用RS来证明DNN,以防止参数化变形(例如旋转,扭曲),同时享受实用的计算成本。我们利用3Deformrs的优点对两个数据集上的四个代表性点云DNN的认证鲁棒性进行了全面的经验研究,并针对七个不同的变形。与以前的认证点云DNN的方法相比,3Deformrs快速,可以很好地缩放点云大小,并提供了可比的证书。例如,当对1024点云的3°z旋转进行证明时,3Deformrs授予证书比以前的工作更快3倍,而20倍。
3D computer vision models are commonly used in security-critical applications such as autonomous driving and surgical robotics. Emerging concerns over the robustness of these models against real-world deformations must be addressed practically and reliably. In this work, we propose 3DeformRS, a method to certify the robustness of point cloud Deep Neural Networks (DNNs) against real-world deformations. We developed 3DeformRS by building upon recent work that generalized Randomized Smoothing (RS) from pixel-intensity perturbations to vector-field deformations. In particular, we specialized RS to certify DNNs against parameterized deformations (e.g. rotation, twisting), while enjoying practical computational costs. We leverage the virtues of 3DeformRS to conduct a comprehensive empirical study on the certified robustness of four representative point cloud DNNs on two datasets and against seven different deformations. Compared to previous approaches for certifying point cloud DNNs, 3DeformRS is fast, scales well with point cloud size, and provides comparable-to-better certificates. For instance, when certifying a plain PointNet against a 3° z-rotation on 1024-point clouds, 3DeformRS grants a certificate 3x larger and 20x faster than previous work.