论文标题

计算$ k $ biSimulations大图:比较和效率分析

Computing $k$-Bisimulations for Large Graphs: A Comparison and Efficiency Analysis

论文作者

Rau, Jannik, Richerby, David, Scherp, Ansgar

论文摘要

总结图W.R.T.结构特征对于降低图形的大小和制作索引,查询和可视化的任务很重要。我们的通用并行BRS算法有效地总结了大图W.R.T.图表顶点$ v $上定义的自定义等价关系$ \ sim $。此外,$ \ sim $的定义可以被链接$ k \ geq 1 $ times,因此定义的等价关系成为$ k $ bisimulation。我们评估了BRS算法的运行时间和记忆性能,以$ k $ b的仿真为$ k = 1,\ ldots,10 $ files在文献中发现的两个算法(由于Kaushik等人的顺序算法是由于Schätzle等人的平行算法而引起的,我们的软件与Brs and and。我们使用五个现实世界和合成图数据集,其中包含1亿至20亿个边缘。我们的结果表明,通用BRS算法在所有$ k \ geq5 $的所有数据集上的各自本机分组算法和在某些情况下较小的$ k $上的表现都优于各自的本机分组算法。两种三拟合算法的BRS实现几乎彼此之间的速度几乎如此之快。因此,BRS算法是顺序Kaushik等人的有效并行化。一分化算法。

Summarizing graphs w.r.t. structural features is important to reduce the graph's size and make tasks like indexing, querying, and visualization feasible. Our generic parallel BRS algorithm efficiently summarizes large graphs w.r.t. a custom equivalence relation $\sim$ defined on the graph's vertices $V$. Moreover, the definition of $\sim$ can be chained $k\geq 1$ times, so the defined equivalence relation becomes a $k$-bisimulation. We evaluate the runtime and memory performance of the BRS algorithm for $k$-bisimulation with $k=1,\ldots,10$ against two algorithms found in the literature (a sequential algorithm due to Kaushik et al. and a parallel algorithm of Schätzle et al.), which we implemented in the same software stack as BRS. We use five real-world and synthetic graph datasets containing 100 million to two billion edges. Our results show that the generic BRS algorithm outperforms the respective native bisimulation algorithms on all datasets for all $k\geq5$ and for smaller $k$ in some cases. The BRS implementations of the two bisimulation algorithms run almost as fast as each other. Thus, the BRS algorithm is an effective parallelization of the sequential Kaushik et al. bisimulation algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源