论文标题
自动多标签提示:简单且可解释的几杆分类
Automatic Multi-Label Prompting: Simple and Interpretable Few-Shot Classification
论文作者
论文摘要
基于及时的学习(即促进)是一种新兴的范式,用于利用验证的语言模型学到的知识。在本文中,我们提出了自动多标签提示(护身符),这是一种简单而有效的方法,可以自动选择标签映射映射,以通过提示使用提示进行几次弹头文本分类。我们的方法利用一对多标签映射映射和基于统计的算法来选择及时模板的标签映射。我们的实验表明,护身符在没有人力或外部资源的情况下在胶水基准上实现竞争性能。
Prompt-based learning (i.e., prompting) is an emerging paradigm for exploiting knowledge learned by a pretrained language model. In this paper, we propose Automatic Multi-Label Prompting (AMuLaP), a simple yet effective method to automatically select label mappings for few-shot text classification with prompting. Our method exploits one-to-many label mappings and a statistics-based algorithm to select label mappings given a prompt template. Our experiments demonstrate that AMuLaP achieves competitive performance on the GLUE benchmark without human effort or external resources.