论文标题

部分可观测时空混沌系统的无模型预测

A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic

论文作者

Cunha, Barbara, Droz, Christophe, Zine, Abdelmalek, Foulard, Stéphane, Ichchou, Mohamed

论文摘要

机器学习的使用(ML)迅速扩散在几个领域,遇到了许多在结构动力学和振动声(SD \&V)中的应用。在前所未有的数据可用性,算法进步和计算能力,增强决策,不确定性处理,模式识别和实时评估的推动下,ML从数据中揭示了洞察力的能力越来越不断提高。 SD \&V中的三个主要应用利用了这些好处。在结构性健康监测中,ML检测和预后可导致安全操作和优化的维护时间表。系统识别和控制设计通过ML技术在主动噪声控制和主动振动控制中利用。最后,所谓的基于ML的替代模型为昂贵的模拟提供了快速的替代方案,从而实现了强大而优化的产品设计。尽管该地区有许多作品,但尚未对其进行审查和分析。因此,为了保持跟踪和理解这一持续的字段集成,本文对SD \&V分析中的ML应用程序进行了调查,从而阐明了实施和新兴机会的现状。针对这三个应用程序中的每一个都确定了基于科学知识的主要方法,优势,局限性和建议。此外,本文考虑了数字双胞胎和物理学的作用,指导ML克服当前的挑战并为未来的研究进步提供动力。结果,该调查提供了SD \&V中应用的ML当前景观的广泛概述,并指导读者对该领域的进步和前景有深入的了解。

The use of Machine Learning (ML) has rapidly spread across several fields, having encountered many applications in Structural Dynamics and Vibroacoustic (SD\&V). The increasing capabilities of ML to unveil insights from data, driven by unprecedented data availability, algorithms advances and computational power, enhance decision making, uncertainty handling, patterns recognition and real-time assessments. Three main applications in SD\&V have taken advantage of these benefits. In Structural Health Monitoring, ML detection and prognosis lead to safe operation and optimized maintenance schedules. System identification and control design are leveraged by ML techniques in Active Noise Control and Active Vibration Control. Finally, the so-called ML-based surrogate models provide fast alternatives to costly simulations, enabling robust and optimized product design. Despite the many works in the area, they have not been reviewed and analyzed. Therefore, to keep track and understand this ongoing integration of fields, this paper presents a survey of ML applications in SD\&V analyses, shedding light on the current state of implementation and emerging opportunities. The main methodologies, advantages, limitations, and recommendations based on scientific knowledge were identified for each of the three applications. Moreover, the paper considers the role of Digital Twins and Physics Guided ML to overcome current challenges and power future research progress. As a result, the survey provides a broad overview of the present landscape of ML applied in SD\&V and guides the reader to an advanced understanding of progress and prospects in the field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源