论文标题

电动机设计优化:凸替代建模方法

Electric Motor Design Optimization: A Convex Surrogate Modeling Approach

论文作者

Borsboom, Olaf, Salazar, Mauro, Hofman, Theo

论文摘要

本文实例化了凸电动力总成设计优化框架,从而弥合了高级动力总成和低级组件设计之间的差距。我们使用基于替代建模技术的可扩展凸电机模型的电动汽车的电动机和电动机传输。具体而言,我们首先选择相关的电机设计变量,并根据预定义的采样计划评估高保真样品。其次,使用示例数据,我们确定电动机的凸模型,该模型将其损失作为操作点和设计参数的函数。我们还确定了动力总成的其余组件的模型,即电池和固定齿轮变速箱。第三,我们将最小能量消耗设计问题在驱动周期中作为二阶圆锥计划,可以通过最佳保证有效地解决。最后,我们在一个紧凑型家庭汽车的案例研究中展示了我们的框架,并计算最佳的运动设计和传输率。我们通过高保真模拟工具来验证模型的准确性,并计算电池能量消耗的漂移。我们表明,我们的模型可以捕获最佳操作线,并且电池能耗的误差很低。总体而言,我们的框架可以为电动机设计专家提供有用的起点,以进行进一步的设计优化。

This paper instantiates a convex electric powertrain design optimization framework, bridging the gap between high-level powertrain sizing and low-level components design. We focus on the electric motor and transmission of electric vehicles, using a scalable convex motor model based on surrogate modeling techniques. Specifically, we first select relevant motor design variables and evaluate high-fidelity samples according to a predefined sampling plan. Second, using the sample data, we identify a convex model of the motor, which predicts its losses as a function of the operating point and the design parameters. We also identify models of the remaining components of the powertrain, namely a battery and a fixed-gear transmission. Third, we frame the minimum-energy consumption design problem over a drive cycle as a second-order conic program that can be efficiently solved with optimality guarantees. Finally, we showcase our framework in a case study for a compact family car and compute the optimal motor design and transmission ratio. We validate the accuracy of our models with a high-fidelity simulation tool and calculate the drift in battery energy consumption. We show that our model can capture the optimal operating line and the error in battery energy consumption is low. Overall, our framework can provide electric motor design experts with useful starting points for further design optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源