论文标题
Carca:通过交叉注意的上下文和属性意识到下一个项目的建议
CARCA: Context and Attribute-Aware Next-Item Recommendation via Cross-Attention
论文作者
论文摘要
在稀疏推荐设置中,用户的上下文和项目属性在决定下一步推荐哪些项目方面起着至关重要的作用。尽管如此,在顺序和时间感知建议中的最新作品通常忽略了这两个方面,或者仅考虑其中一个方面,从而限制了他们的预测性能。在本文中,我们通过提出上下文和属性吸引推荐模型(CARCA)来解决这些限制,该模型可以通过上下文特征和项目属性通过专用的多头自我发场块来捕获用户配置文件的动态性质,从而提取配置文件级别的特征级特征和预测项目得分。同样,与许多当前最新的顺序项目推荐方法不同,这些方法在最新项目的潜在特征和目标嵌入得分的目标项目之间使用了简单的点产品,Carca使用所有配置文件项目和目标项目之间的跨注意来预测其最终分数。这种交叉注意使Carca可以利用用户配置文件中的旧项目和最近项目之间的相关性,以及他们决定下一步推荐哪个项目的影响。在四个现实世界中推荐系统数据集的实验表明,在项目建议的任务中,提出的模型在项目建议任务中的所有最新模型都显着超过了所有最新模型,并在标准化的折扣累积增益(NDCG)和命中率和命中率和命中率中提高了53%。结果还表明,Carca的表现优于几个最先进的基于图像的推荐系统,仅利用以黑箱方式从预训练的RESNET50中提取的图像属性。
In sparse recommender settings, users' context and item attributes play a crucial role in deciding which items to recommend next. Despite that, recent works in sequential and time-aware recommendations usually either ignore both aspects or only consider one of them, limiting their predictive performance. In this paper, we address these limitations by proposing a context and attribute-aware recommender model (CARCA) that can capture the dynamic nature of the user profiles in terms of contextual features and item attributes via dedicated multi-head self-attention blocks that extract profile-level features and predicting item scores. Also, unlike many of the current state-of-the-art sequential item recommendation approaches that use a simple dot-product between the most recent item's latent features and the target items embeddings for scoring, CARCA uses cross-attention between all profile items and the target items to predict their final scores. This cross-attention allows CARCA to harness the correlation between old and recent items in the user profile and their influence on deciding which item to recommend next. Experiments on four real-world recommender system datasets show that the proposed model significantly outperforms all state-of-the-art models in the task of item recommendation and achieving improvements of up to 53% in Normalized Discounted Cumulative Gain (NDCG) and Hit-Ratio. Results also show that CARCA outperformed several state-of-the-art dedicated image-based recommender systems by merely utilizing image attributes extracted from a pre-trained ResNet50 in a black-box fashion.