论文标题
PDE受限的脑电图源重建的优化
PDE-constrained optimization for electroencephalographic source reconstruction
论文作者
论文摘要
本文介绍了一种新颖的数值方法,用于脑电图的反问题(EEG)。我们将逆脑电图问题作为泊松方程的最佳控制问题(OC)问题。最佳条件导致微分方程的变分系统。它直接在有限元空间中离散,导致具有稀疏Karush-Kuhn-Tucker矩阵的线性方程系统。该方法使用有限元离散化,因此可以处理几乎任意复杂性的基于MRI的网格。它扩展了众所周知的混合准可逆性方法(MQRM),在该噪声数据中明确出现在该配方中,从而使嘈杂的数据从电极到头皮表面进行了不必要的繁琐插值。所得的代数问题与在混合准可逆性中获得的代数问题有很大不同,但仅略大。该算法的一个有趣特征是它不需要形成铅场基质。我们的测试均具有球形和基于MRI的网格,表明该方法准确地重建了皮质活性。
This paper introduces a novel numerical method for the inverse problem of electroencephalography(EEG). We pose the inverse EEG problem as an optimal control (OC) problem for Poisson's equation. The optimality conditions lead to a variational system of differential equations. It is discretized directly in finite-element spaces leading to a system of linear equations with a sparse Karush-Kuhn-Tucker matrix. The method uses finite-element discretization and thus can handle MRI-based meshes of almost arbitrary complexity. It extends the well-known mixed quasi-reversibility method (mQRM) in that pointwise noisy data explicitly appear in the formulation making unnecessary tedious interpolation of the noisy data from the electrodes to the scalp surface. The resulting algebraic problem differs considerably from that obtained in the mixed quasi-reversibility, but only slightly larger. An interesting feature of the algorithm is that it does not require the formation of the lead-field matrix. Our tests, both with spherical and MRI-based meshes, demonstrates that the method accurately reconstructs cortical activity.