论文标题
卷积自动编码器的性能,旨在从p型点上删除电子噪声触及锗探测器信号
Performance of a convolutional autoencoder designed to remove electronic noise from p-type point contact germanium detector signals
论文作者
论文摘要
我们提出了一个卷积自动编码器,可从P型点接触高纯晶锗探测器,类似于在几个罕见事件搜索中使用的脉冲。尽管我们专注于依靠详细检测器物理模拟的培训程序,但我们还提出了仅需要嘈杂的检测器脉冲来训练模型的实现。我们从$^{241} $ AM源对模拟数据和校准数据验证我们的自动编码器,后者用于证明固定的脉冲在统计上与数据脉冲兼容。我们证明,我们的denoising方法能够很好地保留脉冲的基本形状,从而改善了传统的脱氧方法。我们还表明,用梯形滤波器计算能量用于计算能量的时间可以显着降低,同时保持可比的能量分辨率。在某些情况下,我们的转化方法可以改善总体能源解决方案。我们开发的消除电子噪声的方法是直接扩展到其他探测器技术的。此外,来自编码器的潜在表示也用于量化信号的基于形状的特征。我们的工作具有巨大的潜力,可以用于粒子物理实验及其他地区。
We present a convolutional autoencoder to denoise pulses from a p-type point contact high-purity germanium detector similar to those used in several rare event searches. While we focus on training procedures that rely on detailed detector physics simulations, we also present implementations requiring only noisy detector pulses to train the model. We validate our autoencoder on both simulated data and calibration data from an $^{241}$Am source, the latter of which is used to show that the denoised pulses are statistically compatible with data pulses. We demonstrate that our denoising method is able to preserve the underlying shapes of the pulses well, offering improvement over traditional denoising methods. We also show that the shaping time used to calculate energy with a trapezoidal filter can be significantly reduced while maintaining a comparable energy resolution. Under certain circumstances, our denoising method can improve the overall energy resolution. The methods we developed to remove electronic noise are straightforward to extend to other detector technologies. Furthermore, the latent representation from the encoder is also of use in quantifying shape-based characteristics of the signals. Our work has great potential to be used in particle physics experiments and beyond.