论文标题

草图指导和渐进的生长gan,以实现现实且可编辑的超声图像合成

Sketch guided and progressive growing GAN for realistic and editable ultrasound image synthesis

论文作者

Liang, Jiamin, Yang, Xin, Huang, Yuhao, Li, Haoming, He, Shuangchi, Hu, Xindi, Chen, Zejian, Xue, Wufeng, Cheng, Jun, Ni, Dong

论文摘要

超声(US)成像广泛用于临床诊断中的解剖结构检查。对我们的图像分析的新超声波研究员和基于深度学习的算法的培训通常需要大量数据。但是,获取和标记大规模的美国成像数据并不容易,尤其是对于发病率较低的疾病而言。现实的美国图像合成可以在很大程度上减轻此问题。在本文中,我们提出了一个基于生成的对抗网络(GAN)的图像综合框架。我们的主要贡献包括:1)我们提出了可以合成具有高分辨率和自定义纹理编辑功能的现实B模式图像的第一批作品; 2)为了增强生成图像的结构细节,我们建议将辅助草图指南引入条件gan。我们将边缘草图上置于对象掩码上,并将复合掩码用作网络输入; 3)为了产生高分辨率的美国图像,我们采用了渐进式训练策略来逐渐从低分辨率图像中产生高分辨率图像。此外,提出了特征损失,以最大程度地减少生成图像和真实图像之间高级特征的差异,从而进一步提高了产生的图像的质量; 4)提出的US图像合成方法非常普遍,除了我们的研究中测试的三个(肺,髋关节和卵巢)之外,还可以将其他解剖结构的图像推广到美国的图像。 5)进行了三个大型美国图像数据集的大量实验以验证我们的方法。消融研究,自定义纹理编辑,用户研究和细分测试证明了我们在综合现实的美国图像中的方法的有希望的结果。

Ultrasound (US) imaging is widely used for anatomical structure inspection in clinical diagnosis. The training of new sonographers and deep learning based algorithms for US image analysis usually requires a large amount of data. However, obtaining and labeling large-scale US imaging data are not easy tasks, especially for diseases with low incidence. Realistic US image synthesis can alleviate this problem to a great extent. In this paper, we propose a generative adversarial network (GAN) based image synthesis framework. Our main contributions include: 1) we present the first work that can synthesize realistic B-mode US images with high-resolution and customized texture editing features; 2) to enhance structural details of generated images, we propose to introduce auxiliary sketch guidance into a conditional GAN. We superpose the edge sketch onto the object mask and use the composite mask as the network input; 3) to generate high-resolution US images, we adopt a progressive training strategy to gradually generate high-resolution images from low-resolution images. In addition, a feature loss is proposed to minimize the difference of high-level features between the generated and real images, which further improves the quality of generated images; 4) the proposed US image synthesis method is quite universal and can also be generalized to the US images of other anatomical structures besides the three ones tested in our study (lung, hip joint, and ovary); 5) extensive experiments on three large US image datasets are conducted to validate our method. Ablation studies, customized texture editing, user studies, and segmentation tests demonstrate promising results of our method in synthesizing realistic US images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源