论文标题
量子点系统的远程纠缠在Fermi-Hubbard方法
Long range entanglement in quantum dot systems under the Fermi-Hubbard approach
论文作者
论文摘要
在本文中,我们有兴趣分析量子点中的成对纠缠,如Ququart Systems,由费米 - 哈伯德模型自然描述。使用并发的下限,我们显示了库仑相互作用对成对纠缠并在对内部创建纠缠的影响。具体来说,可以证明,纠缠范围可以扩展到第三个相邻站点,系统大小为$ l = 4 $,而对于$ l> 4 $,可以通过库仑交互创建范围并将其扩展到第三个相邻站点。对对对的严格描述是根据与每对相关的局部半填充状态,与电子编号$ n = 2 $和旋转$ s = 0 $相关的局部半填充状态。对该状态的详尽研究提供了与成对纠缠有关的正确解释,即在库仑相互作用以及系统大小的效果下其数量和行为。
In the present paper we are interested in analyzing the pairwise entanglement in quantum dots, as ququart systems, naturally described by the Fermi-Hubbard model. Using the lower bound of concurrence we show the effect of the Coulomb interaction on the pairwise entanglement and creating entanglement within the pairs. Specifically, it is shown that the range of entanglement can be extended to the third neighboring site for a system size of $L=4$, while for $L>4$ the range could be created and extended to the third neighboring site by means of the Coulomb interaction. A rigorous description of the pairs is given in terms of a local half filled state associated to each pair with an electron number $N=2$ and a spin $S=0$. A thorough study of this state provides a proper explanation related to the pairwise entanglement, namely its amount and its behavior under the effect of the Coulomb interaction as well as the system's size.