论文标题

使用神经操作员和自动编码器体系结构学习两相微观结构的演变

Learning two-phase microstructure evolution using neural operators and autoencoder architectures

论文作者

Oommen, Vivek, Shukla, Khemraj, Goswami, Somdatta, Dingreville, Remi, Karniadakis, George Em

论文摘要

相位场建模是一种有效但计算上昂贵的方法,用于捕获材料中的中尺度形态和微观结构演化。因此,需要快速且可推广的替代模型来减轻计算征税过程的成本,例如在材料的优化和设计中。尖锐相边界存在产生的物理现象的固有不连续性,使替代模型的训练繁琐。我们开发了一个框架,该框架将卷积自动编码器架构与深神经操作员(DeepOnet)整合在一起,以了解两相混合物的动态演化,并加速时间到达预测微结构演变的时间。我们利用卷积自动编码器在低维的潜在空间中提供微观结构数据的紧凑表示。 DeepOnet由两个子网络组成,一个用于在固定数量的传感器位置(分支网)编码输入函数,另一个用于编码输出功能(TRUNK NET)的位置,了解从自动辅助式潜在空间中微结构演变的中尺度动力学。然后,卷积自动编码器的解码器部分从deponet预测中重建了时间进化的微结构。然后,可以使用训练有素的DeepOnet架构来替换插值任务中的高保真相位数值求解器或在外推任务中加速数值求解器。

Phase-field modeling is an effective but computationally expensive method for capturing the mesoscale morphological and microstructure evolution in materials. Hence, fast and generalizable surrogate models are needed to alleviate the cost of computationally taxing processes such as in optimization and design of materials. The intrinsic discontinuous nature of the physical phenomena incurred by the presence of sharp phase boundaries makes the training of the surrogate model cumbersome. We develop a framework that integrates a convolutional autoencoder architecture with a deep neural operator (DeepONet) to learn the dynamic evolution of a two-phase mixture and accelerate time-to-solution in predicting the microstructure evolution. We utilize the convolutional autoencoder to provide a compact representation of the microstructure data in a low-dimensional latent space. DeepONet, which consists of two sub-networks, one for encoding the input function at a fixed number of sensors locations (branch net) and another for encoding the locations for the output functions (trunk net), learns the mesoscale dynamics of the microstructure evolution from the autoencoder latent space. The decoder part of the convolutional autoencoder then reconstructs the time-evolved microstructure from the DeepONet predictions. The trained DeepONet architecture can then be used to replace the high-fidelity phase-field numerical solver in interpolation tasks or to accelerate the numerical solver in extrapolation tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源