论文标题

凸体上的曲率功能

Curvature functionals on convex bodies

论文作者

Tatarko, Kateryna, Werner, Elisabeth M.

论文摘要

我们研究了出现在最近建立的$ l_p $ steiner公式中的加权$ l_p $ affine表面积。我们证明它们是凸面上的估值,并证明了它们的等量不平等。我们表明,它们与凸形机构的圆锥体测量及其极性的$ f $差异有关,即Kullback-Leibler Divergence和Rényi-Divergence。

We investigate the weighted $L_p$ affine surface areas which appear in the recently established $L_p$ Steiner formula of the $L_p$ Brunn Minkowski theory. We show that they are valuations on the set of convex bodies and prove isoperimetric inequalities for them. We show that they are related to $f$ divergences of the cone measures of the convex body and its polar, namely the Kullback-Leibler divergence and the Rényi-divergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源