论文标题
关于广义persidskii系统的环形短期稳定条件
On annular short-time stability conditions for generalized Persidskii systems
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper studies the trajectory behavior evaluation for generalized Persidskii systems with an essentially bounded input on a finite time interval. Also, the notions of annular settling and output annular settling for general nonlinear systems are introduced. We propose conditions for annular short-time stability, short-time boundedness with a nonzero initial state, annular settling, and output annular settling for a class of Persidskii systems. These conditions are based on the verification of linear matrix inequalities. An application to recurrent neural networks illustrates the usefulness of the proposed notions and conditions.