论文标题

不确定性原理的4D-Einstein-Gauss-Bonnet黑洞的鹰温度

Hawking Temperature for 4D-Einstein-Gauss-Bonnet Black Holes from uncertainty principle

论文作者

Azizi, Sara, Eslamzadeh, Sareh, Firouzjaee, Javad T., Nozari, Kourosh

论文摘要

受弦理论的启发,海森伯格的不确定性原理可以推广到包括光子电子引力相互作用,从而导致普遍的不确定性原理(GUP)。尽管GUP考虑了物理学的最小基本长度尺度上的重力不确定性,但它不考虑时空曲率对量子机械不确定性关系的影响。扩展的不确定性原理(EUP)是海森堡不确定性原理的概括,该原理与GUP不同,适用于较大的长度尺度。 GEUP也是EUP和GUP的线性组合,在大长度尺度上产生了最小的不确定性。爱因斯坦 - 加斯 - 邦纳特理论(EGB)可以被认为是改良重力最有前途的候选者之一。在本文中,通过使用GUP,EUP和GEUP,我们打算在渐近平坦和(抗) - 保姆时空中获得四维EGB黑洞的鹰温度。我们表明,耦合常数,宇宙常数,质量和半径会显着影响鹰温度,并根据所选择的视野降低或降低鹰温度。

Inspired by string theory, Heisenberg's uncertainty principle can be generalized to include the photon-electron gravitational interaction, which leads to the Generalized Uncertainty Principle (GUP). Although GUP considers gravitational uncertainty at the minimum fundamental length scale in physics, it does not consider the effects of spacetime curvature on quantum mechanical uncertainty relations. The Extended Uncertainty Principle (EUP) is a generalization of Heisenberg's Uncertainty Principle that, unlike the GUP, applies to large length scales. GEUP is also a linear combination of EUP and GUP that creates minimal uncertainty on large length scales. The Einstein-Gauss-Bonnet theory (EGB) can be considered as one of the most promising candidates for modified gravity. In this paper, by using GUP, EUP, and GEUP, we intend to obtain the Hawking temperature of a four-dimensional EGB black hole in the asymptotically flat and (Anti)-de Sitter spacetime. We show that coupling constant, cosmological constant, mass, and radius significantly affect Hawking temperature and decrease or increase Hawking temperature depending on the chosen horizons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源