论文标题

乘法功能与自动型L功能的相关性

Correlations of multiplicative functions with automorphic L-functions

论文作者

Jiang, Yujiao, Lü, Guangshi

论文摘要

令$ λ_ϕ(n)$为$ {\ rm sl} _2(\ mathbb z)$上的Hecke Holomorphic或Hecke-maass cusp表格的傅立叶系数,而$ f $是任何满足两个轻度假设的多重功能。我们建立了一个相关性的非平凡的上限$ \ sum_ {n \ leq x} f(n)λ_ϕ(n+h)$均匀地以$ 0 <| h | h | \ ll x $。作为应用程序,我们考虑了一些特殊情况,包括$λ_π(n),\,μ(n)λ_π(n)$和任何分裂的乘法函数。 Here $λ_π(n)$ denotes the $n$-th Dirichlet coefficient of $\text{GL}_m$ automorphic $L$-function $L(s,π)$ for an automorphic irreducible cuspidal representation $π$, and $μ(n)$ denotes the Möbius function.特别是,在$ {\ rm gl} _m \ times {\ rm gl} _2 \,(m \ geq 4)$和假设C上,第一次节省了一些节省的卷积问题。

Let $λ_ϕ(n)$ be the Fourier coefficients of a Hecke holomorphic or Hecke--Maass cusp form on ${\rm SL}_2(\mathbb Z)$, and $f$ be any multiplicative function that satisfies two mild hypotheses. We establish a non-trivial upper bound for the correlation $\sum_{n \leq X}f(n)λ_ϕ(n+h)$ uniformly in $0<|h|\ll X$. As applications, we consider some special cases, including $λ_π(n), \,μ(n)λ_π(n)$ and any divisor-bounded multiplicative function. Here $λ_π(n)$ denotes the $n$-th Dirichlet coefficient of $\text{GL}_m$ automorphic $L$-function $L(s,π)$ for an automorphic irreducible cuspidal representation $π$, and $μ(n)$ denotes the Möbius function. In particular, some savings are achieved for shifted convolution problems on ${\rm GL}_m\times {\rm GL}_2\, (m\geq 4)$ and Hypothesis C for the first time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源