论文标题
神经反馈回路的向后达到性分析
Backward Reachability Analysis for Neural Feedback Loops
论文作者
论文摘要
在安全 - 关键应用中,神经网络(NNS)的患病率不断提高,要求采用证明其行为并保证安全性的方法。本文提出了一种落后的方法,以安全验证神经反馈环(NFLS),即具有NN控制策略的闭环系统。尽管最近的作品集中在远程达到NFL的安全认证策略上,但落后性能比远期策略具有优势,尤其是在避免障碍的情况下。先前的工作已经开发了用于无NNS系统的向后可及性分析的技术,但是由于其激活功能的非线性,反馈回路中的NNS存在一组独特的问题,并且由于NN模型通常不可逆转。为了克服这些挑战,我们使用现有的前向NN分析工具在控制输入上找到仿射界,并求解一系列线性程序(LPS),以有效地找到反向投影(BP)集的近似值,即NN控制策略将系统将系统推向给定的目标集。我们在给定时间范围内提出了一种迭代算法,以迭代地查找BP集估计值,并证明在BP集估计值中降低保守性的能力最多高达88%,而额外的计算成本较低。我们使用双积分器模型的数值结果来验证这些算法的疗效,并在远程触发能力失败的情况下证明了线性化地面机器人模型的安全性的能力。
The increasing prevalence of neural networks (NNs) in safety-critical applications calls for methods to certify their behavior and guarantee safety. This paper presents a backward reachability approach for safety verification of neural feedback loops (NFLs), i.e., closed-loop systems with NN control policies. While recent works have focused on forward reachability as a strategy for safety certification of NFLs, backward reachability offers advantages over the forward strategy, particularly in obstacle avoidance scenarios. Prior works have developed techniques for backward reachability analysis for systems without NNs, but the presence of NNs in the feedback loop presents a unique set of problems due to the nonlinearities in their activation functions and because NN models are generally not invertible. To overcome these challenges, we use existing forward NN analysis tools to find affine bounds on the control inputs and solve a series of linear programs (LPs) to efficiently find an approximation of the backprojection (BP) set, i.e., the set of states for which the NN control policy will drive the system to a given target set. We present an algorithm to iteratively find BP set estimates over a given time horizon and demonstrate the ability to reduce conservativeness in the BP set estimates by up to 88% with low additional computational cost. We use numerical results from a double integrator model to verify the efficacy of these algorithms and demonstrate the ability to certify safety for a linearized ground robot model in a collision avoidance scenario where forward reachability fails.