论文标题

IOP-FL:联合医学图像细分的Inside-Out-Outside个性化

IOP-FL: Inside-Outside Personalization for Federated Medical Image Segmentation

论文作者

Jiang, Meirui, Yang, Hongzheng, Cheng, Chen, Dou, Qi

论文摘要

联合学习(FL)允许多个医疗机构在不集中客户数据的情况下协作学习全球模型。如果可能的话,由于各种扫描仪和患者人口统计的医学图像异质性,这种全球模型通常很难为每个客户实现最佳性能。当部署全球模型以在联合培训期间未看到的分布情况下,在FL之外看不见的客户时,这个问题变得更加重要。为了优化每个客户对医学成像任务的预测准确性,我们为\ textit {fl}中的内外模型个性化提出了一个新颖的统一框架(IOP-FL)。我们的内部个性化使用一种基于轻量级梯度的方法,通过累积全球梯度的常识和特定于客户特定优化的本地梯度来利用本地适应的模型。此外,重要的是,获得的本地个性化模型和全球模型可以形成一个多样化且内容丰富的路由空间,以个性化适用于外部FL客户的改编模型。因此,鉴于测试数据传达的分布信息,我们使用一致性损失的一致性损失设计了一种新的测试时间路由方案。我们对两个医学图像分割任务的广泛实验结果对内部和外部个性化的SOTA方法进行了显着改善,这表明了我们的IOP-FL方案在临床实践中的潜力。

Federated learning (FL) allows multiple medical institutions to collaboratively learn a global model without centralizing client data. It is difficult, if possible at all, for such a global model to commonly achieve optimal performance for each individual client, due to the heterogeneity of medical images from various scanners and patient demographics. This problem becomes even more significant when deploying the global model to unseen clients outside the FL with unseen distributions not presented during federated training. To optimize the prediction accuracy of each individual client for medical imaging tasks, we propose a novel unified framework for both \textit{Inside and Outside model Personalization in FL} (IOP-FL). Our inside personalization uses a lightweight gradient-based approach that exploits the local adapted model for each client, by accumulating both the global gradients for common knowledge and the local gradients for client-specific optimization. Moreover, and importantly, the obtained local personalized models and the global model can form a diverse and informative routing space to personalize an adapted model for outside FL clients. Hence, we design a new test-time routing scheme using the consistency loss with a shape constraint to dynamically incorporate the models, given the distribution information conveyed by the test data. Our extensive experimental results on two medical image segmentation tasks present significant improvements over SOTA methods on both inside and outside personalization, demonstrating the potential of our IOP-FL scheme for clinical practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源