论文标题
着装要求:高分辨率多类虚拟试验
Dress Code: High-Resolution Multi-Category Virtual Try-On
论文作者
论文摘要
基于图像的虚拟试验努力将衣服的外观转移到目标人的图像上。先前的工作主要集中在上身衣服上(例如T恤,衬衫和上衣),并忽略了全身或低身物品。这个缺点来自一个主要因素:用于基于图像的虚拟试验的当前公开可用数据集并不解释此品种,从而限制了该领域的进度。为了解决这种缺陷,我们介绍着着装代码,其中包含多类服装的图像。着装码比公共可用的数据集大于3倍以上,用于基于图像的虚拟尝试,并具有前视图,全身参考模型的高分辨率配对图像(1024x768)。为了生成具有高视觉质量且细节丰富的高清尝试图像,我们建议学习细粒度的区分功能。具体而言,我们利用一种语义感知的歧视器,该歧视器在像素级而不是图像级或补丁级别上进行预测。广泛的实验评估表明,所提出的方法在视觉质量和定量结果方面超过了基准和最先进的竞争者。着装码数据集可在https://github.com/aimagelab/dress-code上公开获取。
Image-based virtual try-on strives to transfer the appearance of a clothing item onto the image of a target person. Prior work focuses mainly on upper-body clothes (e.g. t-shirts, shirts, and tops) and neglects full-body or lower-body items. This shortcoming arises from a main factor: current publicly available datasets for image-based virtual try-on do not account for this variety, thus limiting progress in the field. To address this deficiency, we introduce Dress Code, which contains images of multi-category clothes. Dress Code is more than 3x larger than publicly available datasets for image-based virtual try-on and features high-resolution paired images (1024x768) with front-view, full-body reference models. To generate HD try-on images with high visual quality and rich in details, we propose to learn fine-grained discriminating features. Specifically, we leverage a semantic-aware discriminator that makes predictions at pixel-level instead of image- or patch-level. Extensive experimental evaluation demonstrates that the proposed approach surpasses the baselines and state-of-the-art competitors in terms of visual quality and quantitative results. The Dress Code dataset is publicly available at https://github.com/aimagelab/dress-code.