论文标题
手性夸克模型
Bottomonium-like tetraquarks in a chiral quark model
论文作者
论文摘要
带有旋转 - 帕尔(Spin-Parity $ j^p = 0^+$,$ j^p = 0^+$,$ 1^+$和usospin $ i = 0,$ i = 0,$ i = 0,$ i = 0,$ i = 0,$ i = 0,$ i = 0,$ i = 0,$ i = 0,$ i = 0,$ i = frac frac,$ j^p-j^p = 0,$ i = 0,是$ i = frac,$ i = frac,$ i = frac {2在手性夸克模型的现实和复杂尺度范围的理论框架内,该模型已经成功地应用于多个多Quark Systems的分析中。一个完整的四体$ S $波功能,其中包括Meson-Meson,Diquark-Antidiquark和Quarks的K-Type布置,以及所有可能的颜色配置。在$ b \ bar {b} q \ bar {q} $(q = u,\,d)$ tetraquark系统中,我们找到了$ b^{(*)} \ bar {b}^{(*){(*)} $,$ b^{(*)} \ bar {(*)}的共鸣状态他们的群众通常位于能源范围内的$ 11.0-11.3 $ GEV,其宽度小于$ 10 $ MEV。此外,在$ b \ bar {b} u \ bar {s} $和$ b \ bar {b} s \ bar {s} $ tetraquark Systems中,都获得了非常狭窄的共振,均在两种含量的强衰减宽度小于$ 1.5 $ MEV的情况下都获得了。特别是,在$ \ sim11.1 $ j^p = 0^p = 0^+$,$ 1^+$和$ 2^+$ channels $ b \ bar {b \ bar {b} u \ bar {s s} $ system。在$ J^p = 1^+$ sector中,获得一个$υ(1s)ϕ(2s)$共振状态。
The low-lying bottomonium-like tetraquarks $b\bar{b}q\bar{q}$ $(q=u,\,d,\,s)$ with spin-parity $J^P=0^+$, $1^+$ and $2^+$, and isospin $I=0,\,1$ or $\frac{1}{2}$, are systematically investigated within the theoretical framework of real- and complex-scaling range of a chiral quark model, which has already been successfully applied in analysis of several multiquark systems. A complete four-body $S$-wave function, which includes meson-meson, diquark-antidiquark and K-type arrangements of quarks, along with all possible color configurations are considered. In the $b\bar{b}q\bar{q}$ $(q=u,\,d)$ tetraquark system, we found resonance states of $B^{(*)} \bar{B}^{(*)}$, $Υω$, $Υρ$ and $η_b ρ$ nature with all possible $I(J^P)$ quantum numbers. Their masses are generally located in the energy range $11.0-11.3$ GeV and their widths are less than $10$ MeV. In addition, extremely narrow resonances, with two-meson strong decay widths less than $1.5$ MeV, are obtained in both $b\bar{b}u\bar{s}$ and $b\bar{b}s\bar{s}$ tetraquark systems. Particularly, four radial excitations of $ΥK^*$ and $η_b K^*$ are found at $\sim11.1$ GeV in $J^P=0^+$, $1^+$ and $2^+$ channels of $b\bar{b}u\bar{s}$ system. One $Υ(1S)ϕ(2S)$ resonance state is obtained at $11.28$ GeV in the $J^P=1^+$ sector.