论文标题

GroupNet:用于轨迹预测的多尺度超图神经网络与关系推理

GroupNet: Multiscale Hypergraph Neural Networks for Trajectory Prediction with Relational Reasoning

论文作者

Xu, Chenxin, Li, Maosen, Ni, Zhenyang, Zhang, Ya, Chen, Siheng

论文摘要

揭开多个代理之间的相互作用与过去的轨迹之间的相互作用至关重要。但是,以前的作品仅考虑与有限的关系推理的成对互动。为了促进关系推理的更全面的交互作用建模,我们提出了一个多尺度超毛神经网络GroupNet,它在捕获和表示学习方面都是新颖的。从捕获的相互作用方面,我们提出了一个可训练的多尺度超图,以在多个组尺寸的情况下捕获配对和小组互动。从交互表示学习的方面,我们提出了一种三元格式,可以端对端学习,并明确地推定某些关系因素,包括相互作用强度和类别。我们将GroupNet应用于基于CVAE的预测系统和先前的最先进的预测系统,以预测具有关系推理的社会合理轨迹。为了验证关系推理的能力,我们尝试了合成物理模拟的实验,以反映捕获群体行为,推理相互作用强度和相互作用类别的能力。为了验证预测的有效性,我们对包括NBA,SDD和ETH-UCY在内的三个现实轨迹预测数据集进行了广泛的实验。我们证明,使用GroupNet,基于CVAE的预测系统优于最先进的方法。我们还表明,添加GroupNet将进一步提高先前最先进的预测系统的性能。

Demystifying the interactions among multiple agents from their past trajectories is fundamental to precise and interpretable trajectory prediction. However, previous works only consider pair-wise interactions with limited relational reasoning. To promote more comprehensive interaction modeling for relational reasoning, we propose GroupNet, a multiscale hypergraph neural network, which is novel in terms of both interaction capturing and representation learning. From the aspect of interaction capturing, we propose a trainable multiscale hypergraph to capture both pair-wise and group-wise interactions at multiple group sizes. From the aspect of interaction representation learning, we propose a three-element format that can be learnt end-to-end and explicitly reason some relational factors including the interaction strength and category. We apply GroupNet into both CVAE-based prediction system and previous state-of-the-art prediction systems for predicting socially plausible trajectories with relational reasoning. To validate the ability of relational reasoning, we experiment with synthetic physics simulations to reflect the ability to capture group behaviors, reason interaction strength and interaction category. To validate the effectiveness of prediction, we conduct extensive experiments on three real-world trajectory prediction datasets, including NBA, SDD and ETH-UCY; and we show that with GroupNet, the CVAE-based prediction system outperforms state-of-the-art methods. We also show that adding GroupNet will further improve the performance of previous state-of-the-art prediction systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源