论文标题

Feynman标量形成块规则

Feynman Rules for Scalar Conformal Blocks

论文作者

Fortin, Jean-François, Hoback, Sarah, Ma, Wen-Jie, Parikh, Sarthak, Skiba, Witold

论文摘要

我们完成了“ Feynman规则”的证明,用于在任何时空维度的任何拓扑中构建$ m $ m $ $ m $ block intosology $ m $ b $ $ m $ - 点的共形块,通过将块的规则(基于其witten图解释)与结构的构造规则相结合,以在任何时空维度中的任意$ m $(基于OPE流量图)结合使用。完整的Feynman规则导致在保形交叉比例中作为超几何类型的功率系列。然后,我们通过递归Feynman规则提供证据,该规则严重依赖第一个Barnes引理和类似梳状结构中感兴趣的拓扑结构的分解。最后,我们提供了一个九点示例来说明规则。

We complete the proof of "Feynman rules" for constructing $M$-point conformal blocks with external and internal scalars in any topology for arbitrary $M$ in any spacetime dimension by combining the rules for the blocks (based on their Witten diagram interpretation) with the rules for the construction of conformal cross ratios (based on OPE flow diagrams). The full set of Feynman rules leads to blocks as power series of the hypergeometric type in the conformal cross ratios. We then provide a proof by recursion of the Feynman rules which relies heavily on the first Barnes lemma and the decomposition of the topology of interest in comb-like structures. Finally, we provide a nine-point example to illustrate the rules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源