论文标题
基于脑电图的情感识别的基准测试领域的概括
Benchmarking Domain Generalization on EEG-based Emotion Recognition
论文作者
论文摘要
近年来,基于脑电图(EEG)的情绪识别已显示出巨大的改善。具体而言,在过去五年中,已经利用了许多领域适应(DA)算法,以增强对受试者的情绪识别模型的概括。 DA方法假设目标域(新用户)中存在校准数据(尽管未标记)。但是,此假设与应用程序方案相冲突,即在没有耗时的校准实验的情况下应部署模型。我们认为,在这些应用中,域的概括(DG)比DA更合理。 DG通过利用来自多个源域的知识来学习如何推广到看不见的目标域,这为训练通用模型提供了新的可能性。在本文中,我们首次对基于脑电图的情感识别的基准最先进的DG算法。由于卷积神经网络(CNN),深度简短网络(DBN)和多层感知器(MLP)已被证明是有效的情感识别模型,因此我们将这三个模型用作固体基线。实验结果表明,DG在种子数据集上达到了高达79.41 \%的精度,以识别三种情绪,从而指出了多种来源时DG在零训练情绪识别中的潜力。
Electroencephalography (EEG) based emotion recognition has demonstrated tremendous improvement in recent years. Specifically, numerous domain adaptation (DA) algorithms have been exploited in the past five years to enhance the generalization of emotion recognition models across subjects. The DA methods assume that calibration data (although unlabeled) exists in the target domain (new user). However, this assumption conflicts with the application scenario that the model should be deployed without the time-consuming calibration experiments. We argue that domain generalization (DG) is more reasonable than DA in these applications. DG learns how to generalize to unseen target domains by leveraging knowledge from multiple source domains, which provides a new possibility to train general models. In this paper, we for the first time benchmark state-of-the-art DG algorithms on EEG-based emotion recognition. Since convolutional neural network (CNN), deep brief network (DBN) and multilayer perceptron (MLP) have been proved to be effective emotion recognition models, we use these three models as solid baselines. Experimental results show that DG achieves an accuracy of up to 79.41\% on the SEED dataset for recognizing three emotions, indicting the potential of DG in zero-training emotion recognition when multiple sources are available.