论文标题
非单明量子黑洞的有效模型
Effective models of non-singular quantum black holes
论文作者
论文摘要
我们研究了Schwarzschild BH的奇异性问题的分辨率如何与地平线量表的量子重力效应有关。在与宇宙学Schwarzschild-DS解决方案的类比中,我们构建了一类具有DS核心的非单一的,静态的,渐近的BH溶液,该类别由各向异性流体来源,它编码了量子校正。后者通过单个长度尺度$ \ ell $进行了参数,该$ \ ell $具有双重解释为有效的“量子头发”,并且可以解决经典的奇异性。根据$ \ ell $的价值,这些解决方案可以具有两个视野,是极端的(两个范围合并时)或无水平的外来恒星。我们还研究了BH溶液的热力学行为,并提出了该区域定律的概括,以解释其熵。当$ \ ell $是经典的Schwarzschild Radius $ r _ {\ rm s} $时,我们找到了极值附近的二阶相变。 $ \ ell \ sim r _ {\ rm s} $的BHS在热力学上优先相对于那些具有$ \ ell \ ll r _ {\ rm s} $的人,这支持了地平线量表的量子校正的相关性。我们还发现,极端配置是一种零温度的零透明状状态,其接近马的几何学分解为ADS $ _2 \ times $ s $^2 $,它向信息paradox发出了可能相关性。我们表明,使用$ \ ell \ sim r _ {\ rm s} $的量子校正存在具有可观察到的现象学特征,并在QNMS频谱中具有可观察的现象学特征。特别是,在近乎超级方案中,光谱的虚构部分以温度为$ C_1/\ ELL+C_2 \ ell t_ \ t_ \ text {h}^2 $,而在接近疗法的限制中线性呈零。我们的一般发现是通过重新审查两个已经知道的模型的确认,即Hayward和Gaussian核心BHS。
We investigate how the resolution of the singularity problem for the Schwarzschild BH could be related to the presence of quantum gravity effects at horizon scales. Motivated by the analogy with the cosmological Schwarzschild-dS solution, we construct a class of non-singular, static, asymptotically-flat BH solutions with a dS core, sourced by an anisotropic fluid, which encodes the quantum corrections. The latter are parametrized by a single length-scale $\ell$, which has a dual interpretation as an effective "quantum hair" and as the length-scale resolving the classical singularity. Depending on the value of $\ell$, these solutions can have two horizons, be extremal (when the two horizons merge) or be horizonless exotic stars. We also investigate the thermodynamic behavior of our BH solutions and propose a generalization of the area law in order to account for their entropy. We find a second-order phase transition near extremality, when $\ell$ is of order of the classical Schwarzschild radius $R_{\rm S}$. BHs with $\ell\sim R_{\rm S}$ are thermodynamically preferred with respect to those with $\ell\ll R_{\rm S}$, supporting the relevance of quantum corrections at horizon scales. We also find that the extremal configuration is a zero-temperature, zero-entropy state with its near-horizon geometry factorizing as AdS$_2\times$ S$^2$, signalizing the possible relevance of these models for the information paradox. We show that the presence of quantum corrections with $\ell\sim R_{\rm S}$ have observable phenomenological signatures in the photon orbits and in the QNMs spectrum. In particular, in the near-extremal regime, the imaginary part of the spectrum scales with the temperature as $c_1/\ell+c_2\ell T_\text{H}^2$, while it goes to zero linearly in the near-horizon limit. Our general findings are confirmed by revisiting two already-known models, namely the Hayward and gaussian-core BHs.